科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)的圖象經(jīng)過點A(0,1),B,且當(dāng)時,
取最大值.
(1)求的解析式;
(2)是否存在向量,使得將的圖象按向量平移后可以得到一個奇函數(shù)的圖象?若存在,求出滿足條件的一個,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(五)理數(shù)學(xué)卷(解析版) 題型:選擇題
已知,滿足, 且目標(biāo)函數(shù)的最大值為7,最小值為1,則。ā 。
A.1 B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省韶關(guān)市高三下學(xué)期第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),當(dāng)時,函數(shù)取得極大值.
(1)求實數(shù)的值;
(2)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;
(3)已知正數(shù),滿足,求證:當(dāng),時,對任意大于,且互不相等的實數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)分別寫出x∈[0,1)時y=f(x)的解析式f1(x)和x∈[1,2)時y=f(x)的解析式f2(x);并猜想x∈[n,n+1],n≥-1,n∈Z時y=f(x)的解析式f n+1(x)(用x和n表示)(不必證明);
(2)當(dāng)x=n+ (n≥-1,n∈Z)時,y=f n+1(x)x∈[n,n+1),(n≥-1,n∈Z)的圖象上有點列A n+1(x,f(x))和點列B n+1(n+1,f(n+1)),線段A n+1B n+2與線段B n+1A n+2的交點C n+1,求點C n+1的坐標(biāo)(a n+1(x),b n+1(x));
(3)在前面(1)(2)的基礎(chǔ)上,請你提出一個點列C n+1(a n+1(x),b n+1(x))的問題,并進(jìn)行研究,并寫下你研究的過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com