若兩直線
相交,且
∥平面
,則
與
的位置關系是________.
試題分析:根據(jù)空間中直線與平面的位置關系可知
與
的位置關系是相交或平行.
點評:解決此類問題的關鍵是熟練掌握空間中點、直線以及平面之間的位置關系.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖:在三棱錐
中,
面
,
是直角三角形,
,
,
,點
分別為
的中點。
⑴求證:
;
⑵求直線
與平面
所成的角的大。
⑶求二面角
的正切值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
正方體ABCD-A
1B
1C
1D
1中,BB
1與平面ACD
1所成的角的余弦值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知兩個不重合的平面
,給定以下條件:
①
內(nèi)不共線的三點到
的距離相等;②
是
內(nèi)的兩條直線,且
;
③
是兩條異面直線,且
;
其中可以判定
的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示,在正四棱錐S-ABCD中,
是
的中點,P點在側面△SCD內(nèi)及其邊界上運動,并且總是保持
.則動點
的軌跡與△
組成的相關圖形最有可有是圖中的( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面ABCD是一直角梯形,
,
,
,且PA=AD=DC=
AB=1.
(1)證明:平面
平面
(2)設AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線
與
所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,棱長為2的正方體
中,E,F滿足
.
(Ⅰ)求證:EF//平面AB
;
(Ⅱ)求證:EF
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,矩形
與矩形
所在的平面互相垂直,將
沿
翻折,翻折后的點
E恰與
BC上的點
P重合.設
,
,
,則當
__時,
有最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分6分)
如圖,在邊長為
的菱形
中,
,
面
,
,
、
分別是
和
的中點.
(1)求證:
面
;
(2)求證:平面
⊥平面
;
(3)求
與平面
所成的角的正切值.
查看答案和解析>>