如圖:在三棱錐
中,
面
,
是直角三角形,
,
,
,點
分別為
的中點。
⑴求證:
;
⑵求直線
與平面
所成的角的大。
⑶求二面角
的正切值。
(1)見解析 (2)
(3)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖在三棱錐S
中
,
,
,
,
.
(1)證明
。
(2)求側(cè)面
與底面
所成二面角的大小。
(3)求異面直線SC與AB所成角的大小
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)如圖,在長方體
中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱
,為
中點,
為
中點,
為
上一個動點.
(Ⅰ)確定
點的位置,使得
;
(Ⅱ)當(dāng)
時,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若兩直線
相交,且
∥平面
,則
與
的位置關(guān)系是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四棱錐
的底面
為菱形,
平面
,
, E、F分別為
的中點,
.
(Ⅰ)求證:平面
平面
.
(Ⅱ)求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)如圖,
平面
,點
在
上,
∥
,四邊形
為直角梯形,
,
,
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)直線
上是否存在點
,使
∥平面
,若存在,求出點
;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
表示兩條直線,
表示兩個平面,則下列命題是真命題的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知平行六面體
ABCD-
A1B1C1D1中,∠
A1AD=∠
A1AB=∠
BAD=60°,
AA1=
AB=
AD=1,
E為
A1D1的中點。
給出下列四個命題:①∠
BCC1為異面直線
與
CC1所成的角;②三棱錐
A1-
ABD是正三棱錐;③
CE⊥平面
BB1D1D;④
;⑤|
|=
.其中正確的命題有_____________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,三棱柱
中,
平面
,
,
,
為
的中點.
(1)求證:
∥平面
;
(2)求二面角
的余弦值;
(3)設(shè)
的中點為
,問:在矩形
內(nèi)是否存在點
,使得
平面
.若存在,求出點
的位置,若不存在,說明理由.
查看答案和解析>>