【題目】方程的曲線即為函數(shù)的圖像,對于函數(shù),有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)不存在零點(diǎn);③函數(shù)的值域是;④的圖像不經(jīng)過第一象限,其中正確結(jié)論的個(gè)數(shù)是___________
【答案】
【解析】
先根據(jù)題意畫出方程的曲線即為函數(shù)y=f(x)的圖象,如圖所示.軌跡是兩段雙曲線的一部分加上一段的橢圓圓弧組成的圖形.從圖形中可以看出,關(guān)于函數(shù)y=f(x)的結(jié)論的正確性.
根據(jù)題意畫出方程的曲線即為函數(shù)y=f(x)的圖象,如圖所示.軌跡是兩段雙曲線的一部分加上一段的橢圓圓弧組成的圖形.
從圖形中可以看出,關(guān)于函數(shù) 的有下列說法:
①R上單調(diào)遞減;正確.
②由 即 ,從而圖形上看,函數(shù)的圖象與直線沒有交點(diǎn),故函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);正確.
③函數(shù)y=f(x)的值域是R;正確.
④的圖象不經(jīng)過第一象限,正確.
其中正確的個(gè)數(shù)是4.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長都為2, 為中點(diǎn),試用空間向量知識解下列問題:
(1)求證面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:,,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計(jì)值(四舍五入保留整數(shù));
(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至多抽到一名“25周歲以下組”工人的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若,且是曲線上不同的點(diǎn),滿足,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市8所中學(xué)生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個(gè)位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是( )
A.91 5.5
B.91 5
C.92 5.5
D.92 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一般地,對于直線及直線外一點(diǎn),我們有點(diǎn)到直線的距離公式為:”
(1)證明上述點(diǎn)到直線的距離公式
(2)設(shè)直線,試用上述公式求坐標(biāo)原點(diǎn)到直線距離的最大值及取最大值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)均在半徑為2的球面上,且滿足,,,則三棱錐的側(cè)面積的最大值為( )
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3.
(1)若a=1,解不等式f(x)≤5;
(2)若函數(shù)f(x)有最小值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com