【題目】如圖,四棱錐的側面是正三角形,,且,,是中點.
(1)求證:平面;
(2)若平面平面,且,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1) 取的中點,連接,再證明四邊形是平行四邊形即可.
(2) 取中點,連接,,根據(jù)線面垂直性質(zhì)計算可得,再以為原點,建立空間直角坐標系,利用空間向量的方法求解二面角的余弦值即可.
(1)取的中點,連接,
因為是中點,
所以,且,
又因為,,
所以,,
即四邊形是平行四邊形,
所以,
又因為平面,平面,
所以平面;
(2)方法一:取中點,連接,,
因為是正三角形,所以,
因為平面平面,
所以平面,平面,
所以,
故,
以為原點,建立如圖所示的空間直角坐標系,則,
,,,,,,
所以,,
設平面的法向量為,則,,
令得,
易知平面的法向量為,
則,
所以二面角的余弦值為.
方法二:過作交于,
所以,且平面,
過作交于,連接,
所以,
所以為二面角的平面角,
因為,,
因為平面,
所以,且,
又因為,所以,,
故,所以二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質(zhì)量等級情況,現(xiàn)隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):
d | |||||
等級 | 三級品 | 二級品 | 一級品 | 特級品 | 特級品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2個.
(1)估計這批水果中特級品的比例;
(2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:
方案A:以6.5元/斤收購;
方案B:以級別分裝收購,每袋20個,特級品8元/袋,一級品5元/袋,二級品4元/袋,三級品3元/袋.
用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢市掀起了轟轟烈烈的“十日大會戰(zhàn)”,要在10天之內(nèi),對武漢市民做一次全員檢測,徹底摸清武漢市的詳細情況.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:
方案①:將每個人的血分別化驗,這時需要驗1000次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血就只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗這樣,該組個人的血總共需要化驗次. 假設此次檢驗中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設. 試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以減少多少次?(最后結果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(在花卉進行硬枝扦插過程中,常需要用生根粉調(diào)節(jié)植物根系生長.現(xiàn)有20株使用了生根粉的花卉,在對最終“花卉存活”和“花卉死亡”進行統(tǒng)計的同時,也對在使用生根粉2個小時后的生根量進行了統(tǒng)計,這20株花卉生根量如下表所示,其中生根量在6根以下的視為“不足量”,大于等于6根為“足量”.現(xiàn)對該20株花卉樣本進行統(tǒng)計,其中“花卉存活”的13株.已知“花卉存活”但生根量“不足量”的植株共1株.
編號 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
生根量 | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 9 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認為“花卉的存活”與“生根足量”有關?
生根足量 | 生根不足量 | 總計 | |
花卉存活 | |||
花卉死亡 | |||
總計 | 20 |
(2)若在該樣本“生根不足量”的植株中隨機抽取3株,求這3株中恰有1株“花卉存活”的概率.
參考數(shù)據(jù):
獨立性檢驗中的,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的右頂點為A,左焦點為,過點A的直線與橢圓C的另一個交點為B,軸,點在直線上.
(I)求的面積;
(II)過點S的直線與橢圓C交于P,Q兩點,且的面積是的面積的6倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,過點作互相垂直的兩條直線分別交橢圓于點(與不重合).
(1)證明:直線過定點;
(2)若以點為圓心的圓與直線相切,且切點為線段的中點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,且的最小值為0.
(1)若的極大值為,求的單調(diào)減區(qū)間;
(2)若,的是的兩個極值點,且,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com