精英家教網 > 高中數學 > 題目詳情
已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),F(c,0)是它的右焦點,經過坐標原點O的直線l與橢圓相交于A,B兩點,且
FA
FB
=0,|
OA
-
OB
|=2|
OA
-
OF
|
,則橢圓的離心率為( 。
A、
2
B、
3
C、
2
-1
D、
3
-1
分析:先由題意知:O是AB的中點,三角形ABF是直角三角形,再結合向量條件,得出△FAO為等邊三角形,從而△AFF1為直角三角形(F1為橢圓的左焦點),最后在Rt△AFF1中,利用邊之間的關系結合橢圓的定義得到a,c的關系,從而求得橢圓的離心率.
解答:解:由題意知:O是AB的中點,三角形ABF是直角三角形,
|
OA
-
OB
|=2|
OA
-
OF
|
|
OA
|=|
AF
|

△FAO為等邊三角形,
故△AFF1為直角三角形(F1為橢圓的左焦點)
在Rt△AFF1中,AF=c,FF1=2c,∴AF1=
3
c
∵AF+AF1=2a,∴c+
3
c=2a,
則橢圓的離心率為
c
a
=
2
1+
3
=
3
-1

故選D.
點評:本題主要考查橢圓離心率的求法.在橢圓中一定要熟練掌握a,b,c之間的關系、離心率、準線方程等基本性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案