【題目】設(shè)函數(shù),.

1)討論上的單調(diào)性;

2)當(dāng)時,若存在正實(shí)數(shù),使得對,都有,求實(shí)數(shù)的取值范圍.

【答案】1)見解析;(2

【解析】

1)對求導(dǎo),得到增區(qū)間,得到減區(qū)間,注意對討論. 2)要使得對,都有,只需研究,,使得對任意,都有,去掉絕對值號有,令,對求導(dǎo) ,分兩種情況研究單調(diào)性和最小值,注意這一特殊函數(shù)值.

解:(1)由,得,

,∴,

當(dāng)時,

,得,即函數(shù)上單調(diào)遞增,

,得,即函數(shù)上單調(diào)遞減;

當(dāng)上恒成立,即函數(shù)上單調(diào)遞增.

綜合以上有,

,即函數(shù)上單調(diào)遞增.

上單調(diào)遞減,在上單調(diào)遞增.

2)由(1)知,

當(dāng)時,上單調(diào)遞減,且

,使得對任意,都有,此時,

則由,得.

設(shè),

,令.

,則,

,

上單調(diào)遞減,注意到,

∴對任意,,與題設(shè)不符;

,則,

上單調(diào)遞增,

,∴對任意,符合題意.

此時取,

可得對任意,都有.

綜上所述,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,以為圓心過橢圓左頂點(diǎn)的圓與直線相切于,且滿足

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),問內(nèi)切圓面積是否有最大值?若有,求出最大值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為正方形上異于點(diǎn),的動點(diǎn),將沿翻折成,在翻折過程中,下列說法正確的是(

A.存在點(diǎn)和某一翻折位置,使得

B.存在點(diǎn)和某一翻折位置,使得平面

C.存在點(diǎn)和某一翻折位置,使得直線與平面所成的角為45°

D.存在點(diǎn)和某一翻折位置,使得二面角的大小為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知為橢圓的上頂點(diǎn),P為橢圓E上異于上、下頂點(diǎn)的一個動點(diǎn).當(dāng)點(diǎn)P的橫坐標(biāo)為時,

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)設(shè)Mx軸的正半軸上的一個動點(diǎn).

①若點(diǎn)P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點(diǎn)M,求AP的長.

②若,是否存在點(diǎn)N,滿足,且AN的中點(diǎn)恰好在橢圓E上?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國法定勞動年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國勞動年齡人口變化情況,有關(guān)專家統(tǒng)計了年我國勞動年齡人口和周歲人口數(shù)量(含預(yù)測),得到下表:

其中年勞動年齡人口是億人,則下列結(jié)論不正確的是(

A.年勞動年齡人口比年減少了萬人以上

B.周歲人口數(shù)的平均數(shù)是

C.年,周歲人口數(shù)每年的減少率都小于同年勞動人口每年的減少率

D.年這周歲人口數(shù)的方差小于這年勞動人口數(shù)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市的企業(yè)進(jìn)行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

評估得分

評定等級

不合格

合格

良好

優(yōu)秀

獎勵(萬元)

環(huán)保部門對企業(yè)評估完成后,隨機(jī)抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

評估得分

頻率

其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是.

1)現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機(jī)抽取個,若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;

2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機(jī)抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)x∈R,其中a,b∈R.

)求fx)的單調(diào)區(qū)間;

)若fx)存在極值點(diǎn)x0,且fx1= fx0),其中x1≠x0,求證:x1+2x0=3;

)設(shè)a0,函數(shù)gx= |fx|,求證:gx)在區(qū)間[0,2]上的最大值不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2|x1||x2|.

(1)f(x)的最小值m

(2)a,b,c均為正實(shí)數(shù),且滿足abcm,求證:≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在進(jìn)入“互聯(lián)網(wǎng)+”時代,大學(xué)生小張自己開了一家玩具店,他通過“互聯(lián)網(wǎng)+”銷售某種玩具,經(jīng)過一段時間對一種玩具的銷售情況進(jìn)行統(tǒng)計,得5數(shù)據(jù)如下:

假定玩具的銷售量(百個)與玩具的銷售價價格(元)之間存在相關(guān)關(guān)系:

銷售量(百個)

2

3

4

5

6

8

單個玩具的銷售價(元)

5.5

4.3

3.9

3.8

3.7

3.6

根據(jù)以上數(shù)據(jù),小張分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.

1)以為解釋變量,為預(yù)報變量,作出散點(diǎn)圖;

2)分別計算模型甲與模型乙的殘差平方和,并通過比較,大小,判斷哪個模型擬后效果更好.

3)若—個玩具進(jìn)價0.5元,依據(jù)(2)中擬合效果好的模型判斷該玩具店有無虧損的可能?

查看答案和解析>>

同步練習(xí)冊答案