分析 求出函數(shù)的導(dǎo)數(shù),令g(x)=x2-(a+2)x+1=(x-α)(x-β),求出g($\frac{1}{e}$)<0,解出a即可.
解答 解:函數(shù)的定義域?yàn)椋?,1)∪(1,+∞)
求導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$-$\frac{a}{{(x-1)}^{2}}$=$\frac{{x}^{2}-(a+2)x+1}{{x(x-1)}^{2}}$,
∵函數(shù)f(x)在(0,$\frac{1}{e}$)內(nèi)有極值
∴f′(x)=0在(0,$\frac{1}{e}$)內(nèi)有解,
令g(x)=x2-(a+2)x+1=(x-α)(x-β)
∵αβ=1,不妨設(shè)0<α<$\frac{1}{e}$,則β>e
∵g(0)=1>0,
∴g($\frac{1}{e}$)=$\frac{1}{{e}^{2}}$-$\frac{a+2}{e}$+1<0,
∴a>e+$\frac{1}{e}$-2,
故答案為:(e+$\frac{1}{e}$-2,+∞).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查函數(shù)的極值問(wèn)題以及導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+3x-16=(x-2)(x+5)-6 | B. | x2-16=(x+4)(x-4) | ||
C. | (x-1)2=x2-2x+1 | D. | ${x^2}+1=x(x+\frac{1}{x})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com