分析 通過三角形的面積公式可知當點P到直線AB的距離最小時面積最小,求出與直線x-y+1=0平行且為拋物線的切線的直線方程,進而利用面積公式計算即得結(jié)論.
解答 解:設(shè)與直線x-y+1=0平行且與拋物線相切的直線l方程為:x-y-t=0,
聯(lián)立直線l與拋物線方程,消去y得:y2-2y-2t=0,
則△=4+8t=0,即t=-$\frac{1}{2}$,
∵直線x-y+1=0與直線l之間的距離d=$\frac{|1-\frac{1}{2}|}{\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
∴Smin=$\frac{1}{2}$|AB|d=$\frac{1}{2}•2•$$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{2}}{4}$,
故答案為$\frac{\sqrt{2}}{4}$.
點評 本題考查直線與圓錐曲線的關(guān)系,考查運算求解能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-y2=8 | B. | x2-y2=4 | C. | y2-x2=8 | D. | y2-x2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | $-\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com