從5男和3女8位志愿者中任選3人參加冬奧會(huì)火炬接力活動(dòng),若隨機(jī)變量ξ表示所選3人中女志愿者的人數(shù),則ξ的數(shù)學(xué)期望是
 
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:本題是一個(gè)超幾何分步,隨機(jī)變量ξ表示所選3人中女生的人數(shù),ξ可能取的值為0,1,2,3,結(jié)合變量對(duì)應(yīng)的事件和超幾何分布的概率公式,寫可得數(shù)學(xué)期望.
解答: 解:由題意知本題是一個(gè)超幾何分步,隨機(jī)變量ξ表示所選3人中女生的人數(shù),ξ可能取的值為0,1,2,3.
P(ξ=0)=
C
3
5
C
3
8
=
10
56
,P(ξ=1)=
C
2
5
C
1
3
C
3
8
=
30
56
,P(ξ=2)=
C
1
5
C
2
3
C
3
8
=
15
56
,P(ξ=3)
C
0
5
C
3
3
C
3
8
=
1
56

∴ξ的數(shù)學(xué)期望為Eξ=0×
10
56
+1×
30
56
+2×
15
56
+3×
1
56
=
9
8

故答案為:
9
8
點(diǎn)評(píng):本小題考查離散型隨機(jī)變量數(shù)學(xué)期望,考查超幾何分步,考查運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且b1=2a1=2,b4=16,a1+a2+a11=b1+b2+b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=(2an-1)bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓的圓心為點(diǎn)(1,2),一條直徑的兩個(gè)端點(diǎn)分別在x軸和y軸上,則此圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知∠C=60°,b=4
3
,則BC邊上的高等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,若輸入i=5,則輸出的k值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸出n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,an+1=an+2-an,a1=2,a2=5,則a5
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的流程圖,輸出的結(jié)果S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高中有甲乙等5名同學(xué)被一所大學(xué)自主招生錄取后,大學(xué)提供了4個(gè)學(xué)院給這5名學(xué)生選擇.假設(shè)選擇每個(gè)學(xué)院是等可能的,則這5人中甲乙進(jìn)同一學(xué)院,且每所學(xué)院都有學(xué)生選擇的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案