(09年大豐調(diào)研)(16分)

已知函數(shù),數(shù)列滿足對于一切,且.?dāng)?shù)列滿足,設(shè)

(Ⅰ)求證:數(shù)列為等比數(shù)列,并指出公比;

(Ⅱ)若,求數(shù)列的通項(xiàng)公式;

(Ⅲ)若為常數(shù)),求數(shù)列從第幾項(xiàng)起,后面的項(xiàng)都滿足

解析:(Ⅰ)

     … 2分

故數(shù)列為等比數(shù)列,公比為3.               ………       4分

(Ⅱ)

                    ………      6分

所以數(shù)列是以為首項(xiàng),公差為 loga3的等差數(shù)列.

                                ………     8分

=1+3,且

                           

     ………      10分

(Ⅲ)

      

假設(shè)第項(xiàng)后有

      即第項(xiàng)后,于是原命題等價(jià)于

        ………       15分

  故數(shù)列項(xiàng)起滿足.       ………       16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研)(10分)已知斜三棱柱,,在底面上的射影恰為的中點(diǎn),又知。

(I)求證:平面;

(II)求到平面的距離;

(III)求二面角余弦值的大小。

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研)(10分)已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研) (16分)

已知函數(shù)(其中) ,

點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.

(Ⅰ) 證明: 函數(shù)上是減函數(shù);

(Ⅱ)求證:是鈍角三角形;

(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研) (14分)

如圖,已知空間四邊形中,,的中點(diǎn).

求證:(1)平面CDE;

(2)平面平面. 

(3)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.

 

查看答案和解析>>

同步練習(xí)冊答案