已知實數(shù)x,y滿足不等式組
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目標(biāo)函數(shù)z=y-ax去的最大值時的唯一最優(yōu)解為(1,3),則實數(shù)a的取值范圍為( 。
A、(1,+∞)
B、[1,+∞)
C、(0,1)
D、(-∞,-1)
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,由目標(biāo)函數(shù)z=y-ax取得最大值時的唯一最優(yōu)解為(1,3)可得a的取值范圍.
解答: 解:由約束條件
x-y+2≥0
x+y-4≥0
2x-y-5≤0
作出可行域如圖,

化目標(biāo)函數(shù)z=y-ax為y=ax+z,
聯(lián)立
x-y+2=0
x+y-4=0
,解得A(1,3),
∵使目標(biāo)函數(shù)z=y-ax取得最大值時的唯一最優(yōu)解為(1,3),
由圖可知a>1,
∴實數(shù)a的取值范圍為(1,+∞).
故選:A.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的方程為
x2
10-a
+
y2
a-2
=1,且此橢圓的焦距為4,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,DE⊥平面ABCD.
(1)求證:AC⊥平面BDE;
(2)若AF∥DE,DE=3AF,點M在線段BD上,且BM=
1
3
BD,求證:AM∥平面 BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程是
x=2cosθ
y=2+2sinθ
(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=-4cosθ.
(1)求曲線C1與C2交點的極坐標(biāo);
(2)A、B兩點分別在曲線C1與C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,an+1=2an,寫出前5項,并猜想an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β,直線l,m,且有l(wèi)⊥α,m?β,給出下列命題:
①若α∥β,則l⊥m;②若l∥m,則α⊥β;③若α⊥β,則l∥m;④若l⊥m,則α∥β;
其中,正確命題個數(shù)有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在坐標(biāo)平面內(nèi)橫縱坐標(biāo)均為整數(shù)的點稱為格點.現(xiàn)有一只螞蟻從坐標(biāo)平面的原點出發(fā),按如下線路沿順時針方向爬過格點:O→A1(1,0)→A2(1,-1)→A3(0,-1)→A4(-1,-1)→A5(-1,0)→A6(-1,1))→A7(0,1)→A8(1,1)→A9(2,1)→…→A12(2,-2)→…→A16(-2,-2)→…→A20(3,2)→…,則螞蟻在爬行過程中經(jīng)過的第350個格點A350坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
6
)+1
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC,角A,B,C的對邊分別為a,b,c,若f(A)=2,a=3,S△ABC=
3
,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z2=5-12i,則f(z)=z-
1
z
的值為
 

查看答案和解析>>

同步練習(xí)冊答案