已知甲、乙兩地距丙的距離均為100km,且甲地在丙地的北偏東20°處,乙地在丙地的南偏東40°處,則甲乙兩地的距離為(  )
A、100km
B、200km
C、100
2
km
D、100
3
km
考點:解三角形的實際應(yīng)用
專題:應(yīng)用題,解三角形
分析:根據(jù)甲、乙兩地距丙的距離均為100km,且甲地在丙地的北偏東20°處,乙地在丙地的南偏東40°處,利用余弦定理即可求出甲乙兩地的距離.
解答: 解:由題意,如圖所示OA=OB=100km,∠AOB=120°,
∴甲乙兩地的距離為AB=
1002+1002-2×100×100×cos120°
=100
3
km,
故選:D.
點評:本題考查解三角形的實際應(yīng)用,考查余弦定理,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
100
的值的一個程序框圖,其中判斷框中應(yīng)填入的是( 。
A、i>100B、i≤100
C、i>50D、i≤50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(2x+5)的定義域為[-2,2],則函數(shù)y=f(x)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

樣本數(shù)據(jù)101,102,98,100,99,100的標(biāo)準(zhǔn)差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(P>0),過焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若
AF
=3
FB
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差為-1的等差數(shù)列,Sn且其前n項和,若S10=S13,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+x2
x
,其中a>0,x∈(0,b],則下列判斷正確的是( 。
A、當(dāng)b
a
時,f(x)的最小值為
a+b2
b
B、當(dāng)0<b
a
時,f(x)的最小值為2
a
C、當(dāng)0<b≤
a
時,f(x)的最小值為
a+b2
b
D、當(dāng)b>0時,f(x)的最小值為2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)在△ABC中,若S△ABC=
1
4
(b2+c2-a2),求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=
lg|x-4|(x≠4)
1(x=4)
,若關(guān)于的方程f2(x)+bf(x)+c=0有5個不同的實根x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=
 

查看答案和解析>>

同步練習(xí)冊答案