【題目】已知命題p:空間兩向量 =(1,﹣1,m)與 =(1,2,m)的夾角不大于 ;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若¬q與p∧q均為假命題,求實數(shù)m的取值范圍.
【答案】解:若命題p為真,則有 0,
即 ,解得m≤﹣1或m≥1,
若命題q為真,則有1< <4,
解得:0<m<15,
∵¬q與p∧q均為假命題,
∴q為真命題,p為假命題.
則有 解得0<m<1.
故所求實數(shù)m的取值范圍是0<m<1
【解析】由¬q與p∧q均為假命題,可得q為真命題,p為假命題.分別求出兩個命題對應(yīng)的參數(shù)的范圍,進(jìn)而可得答案.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點 的光線,經(jīng) 軸上一點 反射后的射線 過點 .
(1)求點 的坐標(biāo);
(2)若圓 過點 且與 軸相切于點 ,求圓 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H.有以下四個命題:
①點H是△A1BD的垂心;②AH垂直平面CB1D1;
③AH= ;④點H到平面A1B1C1D1的距離為 .
其中真命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場對甲、乙兩種品牌的商品進(jìn)行為期100天的營銷活動,為調(diào)查者100天的日銷售情況,隨機抽取了10天的日銷售量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖,若日銷量不低于50件,則稱當(dāng)日為“暢銷日”.
(1)現(xiàn)從甲品牌日銷量大于40且小于60的樣本中任取兩天,求這兩天都是“暢銷日”的概率;
(2)用抽取的樣本估計這100天的銷售情況,請完成這兩種品牌100天銷量的列聯(lián)表,并判斷是否有的把握認(rèn)為品牌與“暢銷日”天數(shù)有關(guān).
附: (其中)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
暢銷日天數(shù) | 非暢銷日天數(shù) | 合計 | |
甲品牌 | |||
乙品牌 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求滿足的的取值;
(2)若函數(shù)是定義在上的奇函數(shù)
①存在,不等式有解,求的取值范圍;
②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 的正方形,E為PC的中點,PB=PD.平面PBD⊥平面ABCD.
(1)證明:PA∥平面EDB.
(2)求三棱錐E﹣BCD與三棱錐P﹣ABD的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外探究小組,每名同學(xué)至多參加兩個小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時參加數(shù)學(xué)和物理小組的有6人,同時參加物理和化學(xué)小組的有4人,則同時參加數(shù)學(xué)和化學(xué)小組的有人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com