【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若在處取得極小值,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)當(dāng)時(shí), ,利用導(dǎo)數(shù)幾何意義,求出函數(shù)在處的切線斜率,再求出切線方程;(2)對函數(shù)求導(dǎo),令,討論的單調(diào)性,對 分情況討論,得出實(shí)數(shù)的取值范圍.
試題解析:(1)當(dāng)時(shí), , , ,所以曲線在點(diǎn)處的切線方程為.
(2)由已知得,則,
記,則,
①當(dāng), 時(shí), ,函數(shù)單調(diào)遞增,
所以當(dāng)時(shí), ,當(dāng)時(shí), ,
所以在處取得極小值,滿足題意.
②當(dāng)時(shí), 時(shí), ,函數(shù)單調(diào)遞增,
可得當(dāng)時(shí), , 時(shí), 當(dāng),
所以在處取得極小值,滿足題意.
③當(dāng)時(shí),當(dāng)時(shí), ,函數(shù)單調(diào)遞增,
時(shí), , 在內(nèi)單調(diào)遞減,
所以當(dāng)時(shí), , 單調(diào)遞減,不合題意.
④當(dāng)時(shí),即,當(dāng)時(shí), , 單調(diào)遞減,
,當(dāng)時(shí), , 單調(diào)遞減, ,
所以在處取得極大值,不合題意.
綜上可知,實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0, )上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,則( )
A. f( )> f( )
B.f( )>f(1)
C. f( )<f( )
D. f( )<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四個(gè)結(jié)論:
直線l經(jīng)過定點(diǎn)(0,-2);
②若直線l在x軸和y軸上的截距相等,則 =1;
當(dāng) ∈[1, 4+3 ]時(shí),直線l的傾斜角q∈[120°,135°];
④當(dāng) ∈(0,+∞)時(shí),直線l與兩坐標(biāo)軸圍成的三角形面積的最小值為 .
其中正確結(jié)論的是(填上你認(rèn)為正確的所有序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1經(jīng)過兩點(diǎn)(-1,-2)、(-1,4),直線l2經(jīng)過兩點(diǎn)(2,1)、(x,6),且l1||l2 , 則x=( ).
A.2
B.-2
C.4
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn),動點(diǎn)在橢圓上,且使得的點(diǎn)恰有兩個(gè),動點(diǎn)到焦點(diǎn)的距離的最大值為.
(1)求橢圓的方程;
(2)如圖,以橢圓的長軸為直徑作圓,過直線上的動點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別為,若直線與橢圓交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動點(diǎn),且.
(1)求證: ;
(2)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:空間兩向量 =(1,﹣1,m)與 =(1,2,m)的夾角不大于 ;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若¬q與p∧q均為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店計(jì)劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤在區(qū)間”為事件A,求P(A)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運(yùn)動”是微信里由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾賬號.手機(jī)用戶可以通過關(guān)注“微信運(yùn)動”公眾號查看自己每天行走的步數(shù),同時(shí)也可以和好友進(jìn)行運(yùn)動量的或點(diǎn)贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機(jī)選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)利用樣本估計(jì)總體的思想,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過10000步的概率;
(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com