已知關于x的二次函數(shù)f(x)=ax2-4bx+1.設集合P={-1,1,2,3,4,5},集合 Q={-2,-1,1,2,3,4},分別從集合P和Q中任取一個數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
分析:由題意可得a>0且
2b
a
≤1,即a≥2b,且a>0.分類一一列舉出求出滿足條件的數(shù)對(a,b)共有16個,而所有的數(shù)對(a,b)有6×6=36個,由此可得所求概率P的值.
解答:解:二次函數(shù)f(x)=ax2-4bx+1圖象的對稱軸為x=
2b
a
.要使y=f(x)在區(qū)間[1,+∞)上為增函數(shù),應有a>0且
2b
a
≤1,∴a≥2b,且a>0.(3分)
①若a=1,則b=-2,-1;
②若a=2,則b=-2,-1,1;
③若a=3,則b=-2,-1,1;
④若a=4,則b=-2,-1,1,2;
⑤若a=5,則b=-2,-1,1,2,(9分)
∴故滿足條件的數(shù)對(a,b)共有16個,而所有的數(shù)對(a,b)有6×6=36個,
∴所求概率P=
16
6×6
=
4
9
.(12分)
點評:本題考查二次函數(shù)的性質(zhì),古典概型問題,可以列舉出試驗發(fā)生包含的事件和滿足條件的事件,應用列舉法來解題是這一部分的最主要思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.
(1)求證:對于任意t∈R,方程f(x)=1必有實數(shù)根;
(2)若方程f(x)=0在區(qū)間(-1,2)上有兩個實數(shù)根,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次函數(shù)f(x)=ax2-2bx-1,(其中常數(shù)a、b∈R),滿足
a+b-6≤0
a>0
b>0
,則函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知關于x的二次函數(shù)f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當b=-2時,由于對任意的x∈R,函數(shù)f(x)的值總大于零,求實數(shù)a的取值范圍;
(Ⅱ)如果方程f(x)=0有一個負根和一個不大于1的正根,求實數(shù)a,b滿足的條件,并在右圖所給坐標系中畫出點(a,b)所在的平面區(qū)域;
(Ⅲ)在第(Ⅱ)問的條件下,若實數(shù)k滿足b=k(a+1)+3,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次函數(shù)f(x)=ax2-8bx+1.
(1)設集合M={1,2,3}和N={-1,1,2,3,4,5},從集合M中隨機取一個數(shù)作為a,從N中隨機取一個數(shù)作為b,求函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率;
(2)設點(a,b)是區(qū)域
x+y-6≤0
x>0
y>0
內(nèi)的隨機點,求函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次函數(shù)f(x)=ax2-4bx+1
(Ⅰ)設集合P={1,2,3},集合Q={-1,1,2,3,4},從集合P中隨機取一個數(shù)作為a,從集合Q中隨機取一個數(shù)作為b,求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(Ⅱ)設點(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

同步練習冊答案