已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+1=Sn-n+3,n∈N+,a1=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)設(shè)的前n項(xiàng)和為Tn,證明:Tn
【答案】分析:(1)根據(jù)題中所給的an+1=Sn-n+3,可得an=sn-1-(n-1)+3,兩者相減即可得出遞推式,進(jìn)而求出數(shù)列{an}的通項(xiàng).
(2)根據(jù)題中所給的式子,求出bn的通項(xiàng)公式,進(jìn)而求出的前n項(xiàng)和Tn,再比較它與的大。
解答:解:(Ⅰ)∵an+1=Sn-n+3,n≥2時(shí),an=Sn-1-(n-1)+3,(2分)∴an+1-an=an-1,即an+1=2an-1,∴an+1-1=2(an-1),(n≥2,n∈N*),(4分)∴an-1=(a2-1)2n-2=3•2n-2an=(6分)
(Ⅱ)∵Sn=an+1+n-3=3•2n-1+n-2,∴(8分)∴
相減得,,(10分)
.(12分)
∴結(jié)論成立.
點(diǎn)評(píng):此題主要考查根據(jù)數(shù)列通項(xiàng)公式之間關(guān)系求解及相關(guān)計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案