F(x)=(1+)f(x) (x0)是偶函數(shù),且f(x)不恒等于零,則f(x)( )

A.是奇函數(shù)

B.是偶函數(shù)

C.可能是奇函數(shù)也可能是偶函數(shù)

D.不是奇函數(shù)也不是偶函數(shù)

答案:A
解析:

根據(jù)偶函數(shù)的定義,有

,

亦即

∵ ,∴ 

∴ f(x)=-f(-x),∴ f(x)是奇函數(shù).

故選A


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
ax-1
的圖象過點(2,2)
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)g(x)=
1
x
,則g(x)
的圖象經(jīng)過怎樣的變換可與函數(shù)f(x)的圖象重合;
(3)設函數(shù)h(x)=f(x)•g(x),求h(x)在(1,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kx+b(k,b為常數(shù)),對任給的正數(shù)m,存在相應的x0∈D,使得當x∈D且x>x0時,總有
0<f(x)-h(x)<m
0<h(x)-g(x)<m
,則稱直線l:y=kx+b為曲線y=f(x)和y=g(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:
①f(x)=x2,g(x)=
x
; 
②f(x)10-x+2,g(x)=
2x-3
x

③f(x)=
x2+1
x
,g(x)=
xlnx+1
lnx
;  
④f(x)=
2x2
x+1
,g(x)=2(x-1-e-x
其中,曲線y=f(x)和y=g(x)存在“分漸近線”的是
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足,對任意x,y∈(-1,1),都有f(x)+f(y)=f(
x+y
1+xy
)
,且 對x∈(-1,0)時,f(x)>0.
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(-1,0)上是減函數(shù);
(3)證明f(
1
n2+3n+1
)=f(
1
n+1
)-f(
1
n+2
)(n∈N*)
;
(4)比較f(
1
5
)+f(
1
11
)+…+f(
1
n2+3n+1
)
f(
1
2
)
的大。

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都樹德中學2012屆高考適應考試(一)數(shù)學試題文理科 題型:022

對于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個準周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個準周期且M=4π的準周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個準周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個準周期且M=2的準周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準周期函數(shù);

④如果f(x)是一個一次函數(shù)與一個周期函數(shù)的和的形式,則f(x)一定是準周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個準周期且M=4的準周期函數(shù);其中的真命題是________

查看答案和解析>>

同步練習冊答案