【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有個.

【答案】3
【解析】解:由題意知, 當(dāng)x≥0時,令M=[0,1]驗證滿足條件,
又因為x>1時,f(x)= <x 故不存在這樣的區(qū)間.
當(dāng)x≤0時,令M=[﹣1,0]驗證滿足條件.
又因為x<﹣1時,f(x)= >x 故不存在這樣的區(qū)間.
又當(dāng)M=[﹣1.1]時滿足條件.
所以答案是:3.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的表示方法的相關(guān)知識,掌握函數(shù)的三種表示方法解析法:就是用數(shù)學(xué)表達(dá)式表示兩個變量之間的對應(yīng)關(guān)系;列表法:就是列出表格來表示兩個變量之間的對應(yīng)關(guān)系;圖象法:就是用圖象表示兩個變量之間的對應(yīng)關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=log2x,x∈(0,2),若關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù):① ,② ,③y=|x2﹣2x|,④y=x+ ,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是(
A.②④
B.②③
C.①③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示.

(1)求甲、乙兩名運動員得分的中位數(shù);

(2)你認(rèn)為哪位運動員的成績更穩(wěn)定?

(3)如果從甲、乙兩位運動員的7場得分中各隨機(jī)抽取一場的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=x2﹣4x
(1)求f(﹣2)的值;
(2)當(dāng)x<0時,求f(x)的解析式;
(3)設(shè)函數(shù)f(x)在[t﹣1,t+1](t>1)上的最大值為g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=x2﹣2x.
(1)畫出偶函數(shù)f(x)的圖像的草圖,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)直線y=k(k∈R)與函數(shù)y=f(x)恰有4個交點時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)f(x)的定義域為R,且在(﹣∞,0)上是增函數(shù),則f(﹣ )與f(a2﹣a+1)(a∈R)的大小關(guān)系是(
A.f(﹣ )≤f(a2﹣a+1)
B.f(﹣ )≥f(a2﹣a+1)?
C.f(﹣ )<f(a2﹣a+1)
D.f(﹣ )>f(a2﹣a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費,超過200度但不超過400度的部分按元/度收費,超過400度的部分按1.0元/度收費.

(Ⅰ)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占,求, 的值;

(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案