已知向量=(sinα,sinα-1),=(sinα+1,-3)則|-|的范圍是( )
A.(,
B.(]
C.[,
D.[]
【答案】分析:先求出-的坐標(biāo),然后根據(jù)模的公式表示出|-|,最后根據(jù)-1≤sinα≤1和二次函數(shù)的性質(zhì)求出|-|的取值范圍.
解答:解:∵向量=(sinα,sinα-1),=(sinα+1,-3)
-=(-1,sinα+2)
∴|-|=
∵根據(jù)三角函數(shù)的有界性可知-1≤sinα≤1,令sinα=t
∴y=(t+2)2+1在[-1,1]上單調(diào)遞增,y∈[2,10],則(sinα+2)2+1∈[2,10]
∴|-|∈[]
故選D.
點(diǎn)評(píng):本題主要考查了向量的減法和模的公式,以及正弦函數(shù)的值域和二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
,
π
2
<β<π,則β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函數(shù)f(x)=
a
b
+
1
2
,且函數(shù)f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的圖象中任意兩相鄰對(duì)稱軸間的距離為π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面積S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ為第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,則sin(α-
π
4
)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案