設x>0,P=2x+2-x,Q=1+2x-x2,則( 。
A、P≥QB、P≤Q
C、P>QD、P<Q
考點:不等式比較大小
專題:不等式的解法及應用
分析:利用基本不等式求出P的范圍,再利用配方法求出Q的最大值,問題得以解決.
解答: 解:∵P=2x+2-x>2
2x2-x
=2,Q=1+2x-x2=-(x-1)2+2≤2,
∴P>Q.
故選:C.
點評:本題主要考查基本不等式的性質和配方法求最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線C的軌跡方程為y(
x+3
-
x-3
)=-2,那么曲線C的軌跡在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N),若數(shù)列{am}滿足am=f(
m
2
)(m∈N+),且{an}的前m項和為Sm,則S2014-S2006=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2=1,a4=5,則{an}的前5項的和S5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα<0,sinα>0,則角α終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
0≤x≤6
y≤x
表示的區(qū)域為A,若x,y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),則點(x,y)在區(qū)域A中的概率為( 。
A、
3
4
B、
1
2
C、
5
12
D、
7
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|x2-x-6≤0},集合B為函數(shù)y=lg(2x-1)的定義域,則A∩B=( 。
A、(
1
2
,3)
B、[
1
2
,3]
C、[
1
2
,3)
D、(
1
2
,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線(1-λ)x+(3λ+1)y-4=0(λ∈R)所過定點恰好落在曲線f(x)=
logax,0<x≤3
|x-4|,x>3
上,若函數(shù)h(x)=f(x)-mx+2有三個不同的零點,則實數(shù)m的范圍是( 。
A、(
1
2
,1)
B、(-∞,
1
2
)∪(1,+∞)
C、(-∞,
1
2
)∪[1,+∞)
D、(
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=alnx+
1
2
x2
,若對任意不相等的兩個正數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0,則實數(shù)a的取值范圍是( 。
A、[0,+∞)
B、(0,+∞)
C、(0,1)
D、(0,1]

查看答案和解析>>

同步練習冊答案