精英家教網(wǎng)如圖,用一平面去截球所得截面的面積為2πcm2,已知球心到該截面的距離為1cm,則該球的體積是
 
cm3
分析:求出小圓的半徑,然后利用球心到該截面的距離為1 cm,小圓的半徑,通過(guò)勾股定理求出球的半徑,即可求出球的體積.
解答:解:用一平面去截球所得截面的面積為2π cm2,所以小圓的半徑為:
2
cm;
已知球心到該截面的距離為1 cm,所以球的半徑為:
12+(
2
)
2
=
3

所以球的體積為:
4
3
πr3
=
4
3
π(
3
)
3
=4
3
π
 (cm3
故答案為:4
3
π
點(diǎn)評(píng):本題是基礎(chǔ)題,考查球的小圓的半徑,球心到該截面的距離,球的半徑之間的關(guān)系,滿足勾股定理,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浦東新區(qū)三模)如圖,用一平面去截球O,所得截面面積為16π,球心O到截面的距離為3cm,O1為截面小圓圓心,AB為截面小圓的直徑.
(1)計(jì)算球O的表面積;
(2)若C是截面小圓上一點(diǎn),∠ABC=30°,M、N分別是線段AO1和OO1的中點(diǎn),求異面直線AC與MN所成的角(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,用一平面去截球O,所得截面面積為16π,球心O到截面的距離為3cm,O1為截面小圓圓心,AB為截面小圓的直徑.
(1)計(jì)算球O的表面積;
(2)若C是截面小圓上一點(diǎn),∠ABC=30°,M、N分別是線段AO1和OO1的中點(diǎn),求異面直線AC與MN所成的角(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)第一題滿分7分,第二題滿分7分.

如圖,用一平面去截球,所得截面面積為,球心到截面的距離為,為截面小圓圓心,為截面小圓的直徑。

(1)計(jì)算球的表面積;

(2)若是截面小圓上一點(diǎn),M、N分別是線段的中點(diǎn),求異面直線所成的角(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省高考數(shù)學(xué)一輪復(fù)習(xí):10.3 球及其表面積和體積(解析版) 題型:解答題

如圖,用一平面去截球所得截面的面積為2πcm2,已知球心到該截面的距離為1cm,則該球的體積是     cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案