(2011•浦東新區(qū)三模)如圖,用一平面去截球O,所得截面面積為16π,球心O到截面的距離為3cm,O1為截面小圓圓心,AB為截面小圓的直徑.
(1)計(jì)算球O的表面積;
(2)若C是截面小圓上一點(diǎn),∠ABC=30°,M、N分別是線段AO1和OO1的中點(diǎn),求異面直線AC與MN所成的角(結(jié)果用反三角函數(shù)表示).
分析:(1)求出小圓的半徑,然后利用球心到該截面的距離為3cm,小圓的半徑,通過勾股定理求出球的半徑,即可求出球的表面積.
(2)由MN∥OA得,∠OAC為異面直線AC與MN所成的角(或補(bǔ)角),連接OC,然后利用余弦定理求出此角的余弦值,最后利用反三角表示出此角即可.
解答:解:(1)連接OA,由題意得,截面小圓半徑為4cm(2分)
在Rt△OAO1中,O1A=4,OO1=3,的由勾股定理知,AO=5,(4分)
所以,球O的表面積為:4π•25=100π(cm2).(7分)
(2)由MN∥OA得,∠OAC為異面直線AC與MN所成的角(或補(bǔ)角).(9分)
在Rt△ABC中,AB=8,∠ABC=30°,則AC=4,(10分)
連接OC,在△OAC中,OA=OC=5,由余弦定理知:cos∠OAC=
AC2+OA2-OC2
2OA•AC
=
42+52-52
2×4×5
=
2
5
,(12分)
故異面直線AC與MN所成的角為arccos
2
5
.(14分)
點(diǎn)評:本題主要考查了球的表面積,以及異面直線及其所成角和余弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)樣本容量為200的頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為
64
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)模擬)下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知數(shù)列{an}是以3為公差的等差數(shù)列,Sn是其前n項(xiàng)和,若S10是數(shù)列{Sn}中的唯一最小項(xiàng),則數(shù)列{an}的首項(xiàng)a1的取值范圍是
(-30,-27)
(-30,-27)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知關(guān)于x的方程
a
x2+
b
x+
c
=
0
,其中
a
、
b
、
c
都是非零向量,且
a
、
b
不共線,則該方程的解的情況是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)函數(shù)f(x)=lg
x-1
的定義域?yàn)?!--BA-->
(1,+∞)
(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案