【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日與月日的數(shù)據(jù),求關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
【答案】(1);(2);(3)可靠.
【解析】
試題分析:(1)組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,其中符合題意的有種,故概率為;(2)利用最小二乘法,計(jì)算回歸直線方程,所以回歸直線方程為;(3)驗(yàn)證,時(shí),誤差都不超過,所以是可靠的.
試題解析:(1)設(shè)抽到不相鄰兩組數(shù)據(jù)為事件,因此從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據(jù)的情況有種,
所以,故選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率是.
(2)由數(shù)據(jù),求得,
,
由公式求得,
所以關(guān)于的線性回歸方程為.
(3)當(dāng)時(shí),,同樣地,當(dāng)時(shí),,
所以該研究所得到的線性回歸方程式可靠的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬元/km,兩條道路造價(jià)為30萬元/km,問:取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列滿足(為常數(shù)),其中為數(shù)列的前項(xiàng)和.
(1)若,,求證:是等差數(shù)列;
(2)若,,求數(shù)列的通項(xiàng)公式;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為, 若成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為直線上任意一點(diǎn),過的直線交橢圓于點(diǎn),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號(hào)).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④異面直線PM與BD所成的角為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于、兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;
(2)若在上存在,使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com