如圖,從邊長(zhǎng)為的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為的小正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度與底面正方形的邊長(zhǎng)的比不超過常數(shù),問:取何值時(shí),長(zhǎng)方體的容積V有最大值?
略
【解析】此題是一道應(yīng)用題,主要還是考查導(dǎo)數(shù)的定義及利用導(dǎo)數(shù)來求區(qū)間函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、解不等式等基礎(chǔ)知識(shí),考查綜合分析和解決問題的能力,解題的關(guān)鍵是求導(dǎo)要精確.
求體積最大值的問題,由題意解出v的表達(dá)式,對(duì)函數(shù)v進(jìn)行求導(dǎo),解出極值點(diǎn),然后根據(jù)極值點(diǎn)來確定函數(shù)v的單調(diào)區(qū)間,
因極值點(diǎn)是關(guān)于a,t的表達(dá)式,此時(shí)就需要討論函數(shù)v的單調(diào)性,分別代入求出最大值,從而求解.
解:長(zhǎng)方體的體積V(x)=4x(x-a)2,(o<x<a),…………………………2分
由≤ t 得 0<x≤< a …………………4分
而V′=12(x-)(x-a) ∴V在(0,)增,在(, a)遞減……………6分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州市六校高三第一學(xué)期期末聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖放置的邊長(zhǎng)為1的正方形沿軸正方向滾動(dòng).設(shè)頂點(diǎn)的軌跡方程是,設(shè)在其兩個(gè)相鄰零點(diǎn)間的圖象與軸所圍區(qū)域?yàn)?/span>S,則直線從所勻速移動(dòng)掃過區(qū)域S的面積D與的函數(shù)圖象大致為( ).
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com