已知函數(shù)
(1)討論的單調(diào)性.
(2)證明:,e為自然對(duì)數(shù)的底數(shù))
詳見(jiàn)解析

試題分析:(1),首先討論時(shí)的單調(diào)性,時(shí),,由的正負(fù),確定討論的范圍,;
(2)時(shí),時(shí),將,然后累加得到所證結(jié)果.
(1)a=0時(shí)
(2)時(shí),
(3)1<a<0時(shí),

由(1)知a=1時(shí),在R上遞減.


  ,    

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,其圖象與軸交于三點(diǎn),其中點(diǎn)的坐標(biāo)為
(1)求的值;
(2)求的取值范圍;
(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,長(zhǎng)度為3的線段AB的端點(diǎn)A、B分別在軸上滑動(dòng),點(diǎn)M在線段AB上,且,
(1)若點(diǎn)M的軌跡為曲線C,求其方程;
(2)過(guò)點(diǎn)的直線與曲線C交于不同兩點(diǎn)E、F,N是曲線上不同于E、F的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知A,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個(gè)極值點(diǎn).
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)滿足,設(shè),則的大小關(guān)系為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設(shè)a=2,求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)在區(qū)間(2,3)中至少有一個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)()
(1)當(dāng)a=2時(shí),求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱、的“伴隨函數(shù)”.已知函數(shù),,若在區(qū)間(1,+∞)上,函數(shù)的“伴隨函數(shù)”,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案