16.在正項等比數(shù)列{an}中,a4+a3-a2-a1=1,則a5+a6的最小值是(  )
A.2B.3C.4D.5

分析 設(shè) a2+a1=x,等比數(shù)列的公比為q,由條件求得 x=$\frac{1}{{q}^{2}-1}$>0,q>1,再由a5+a6 =xq4 =$\frac{{q}^{4}}{{q}^{2}-1}$=q2+1+$\frac{1}{{q}^{2}-1}$)=q2-1+$\frac{1}{{q}^{2}-1}$+2,利用基本不等式求出a5+a6的最小值.

解答 解:在正項等比數(shù)列{an}中,設(shè) a2+a1=x,等比數(shù)列的公比為q,
則a4+a3 =xq2,a5+a6 =xq4
再由a4+a3-a2-a1=1,可得xq2=1+x,∴x=$\frac{1}{{q}^{2}-1}$>0,q>1.
∴a5+a6 =xq4 =$\frac{{q}^{4}}{{q}^{2}-1}$=q2+1+$\frac{1}{{q}^{2}-1}$)=q2-1+$\frac{1}{{q}^{2}-1}$+2≥2+2=4,
當且僅當q2-1=1時,等號成立,故a5+a6的最小值為4,
故選C.

點評 本題主要考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的通項公式以及基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2+(a-1)x+4,g(x)=x2+(a+1)x+a+4,若不存在實數(shù)x0,使得$\left\{\begin{array}{l}f({x_0})<0\\ g({x_0})<0\end{array}\right.$,則實數(shù)a的取值范圍為$[{1-\sqrt{17},1+\sqrt{17}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=x3+2x2+mx-5是R上的單調(diào)遞增函數(shù),則m的取值范圍是$[\frac{4}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)為奇函數(shù),且x>0時f(x)=2x-2,則不等式f(x+1)<0的解集為(  )
A.{x|x<0或1<x<2}B.{x|-2<x<-1或x>0}C.{x|x<-2或-1<x<0}D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知 f(x)、g(x)分別為奇函數(shù)、偶函數(shù),且 f(x)+g(x)=2 x+2x,求 f(x)、g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角α的終邊經(jīng)過點(3a,-4a)(a<0),則sinα-cosα等于( 。
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已函數(shù)f(x)=|2x+a|的增區(qū)間是[3,+∞),則實數(shù)a的取值是(  )
A.-6B.-5C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某小區(qū)的綠化地,有一個三角形的花圃區(qū),若該三角形的三個頂點分別用A,B,C表示,其對邊分別為a,b,c且滿足(2b-c)cosA-acosC=0,則在A處望B、C所成的角的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知A,B,C分別為邊a,b,c所對的角,已知$\overrightarrow{CA}•\overrightarrow{CB}=2$,a+b=ab,其面積$S=\sqrt{3}$,則邊c=2.

查看答案和解析>>

同步練習(xí)冊答案