【題目】已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,數(shù)列{bn}的前n項和為Tn , 求證:Tn<2.
【答案】
(1)解:2Sn+an=1,2Sn+1+an+1=1,
∴2an+1+an+1=an,
∴3an+1=an,
又2S1+a1=1,
∴a1= ,
∴{an}是以 為首項,以 為公比的等比數(shù)列,
∴an=( )n
(2)解:證明: = = =2( ﹣ )
∴Tn=2[(1﹣ )+( ﹣ )+…+( ﹣ )]=2(1﹣ )<2
【解析】(1)根據(jù)數(shù)列的遞推公式和對數(shù)的運算性質(zhì)即可求出數(shù)列{an}的通項公式,(2)利用裂項求和即可求出數(shù)列{bn}的前n項和Tn , 再放縮證明即可.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( ),若函數(shù)F(x)=f(x)﹣3的所有零點依次記為x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 則x1+2x2+2x3+…+2xn﹣1+xn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x﹣lnx,a∈R.
(1)當(dāng) 時,求函數(shù)f(x)的最小值;
(2)若﹣1≤a≤0,證明:函數(shù)f(x)有且只有一個零點;
(3)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題函數(shù)是上的奇函數(shù),命題函數(shù)的定義域和值域都是,其中.
(1)若命題為真命題,求實數(shù)的值;
(2)若“且”為假命題,“或”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項為1,且,數(shù)列滿足,,對任意,都有.
(1)求數(shù)列、的通項公式;
(2)令,數(shù)列的前項和為.若對任意的,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四個不相等的實數(shù)根,則實數(shù)m的取值范圍是( )
A.(﹣∞,﹣ )
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進行統(tǒng)計,y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(1)若從這5天隨機抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計該活動持續(xù)7天,共有多少名顧客參加抽獎?
參考公式及數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ x2﹣ax(a為常數(shù))有兩個極值點.
(1)求實數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個極值點分別為x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com