設(shè),若,,
(1)若,求的取值范圍;
(2)判斷方程內(nèi)實(shí)根的個(gè)數(shù).

(1)(-2,-1)
(2)2

解析試題分析:證明:(1),,由,得,代入得:,即,且,即
(2),又,.則f(x)在區(qū)間內(nèi)各有一個(gè),故在內(nèi)有2個(gè)實(shí)根.
考點(diǎn):函數(shù)與方程
點(diǎn)評(píng):主要是考查了函數(shù)與方程根問題,二次函數(shù)圖象與性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定.大橋上的車距與車速和車長的關(guān)系滿足:為正的常數(shù)),假定車身長為,當(dāng)車速為時(shí),車距為2.66個(gè)車身長.
寫出車距關(guān)于車速的函數(shù)關(guān)系式;
應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某面包廠2011年利潤為100萬元,因市場(chǎng)競(jìng)爭(zhēng),若不開發(fā)新項(xiàng)目,預(yù)測(cè)從2012年起每年利潤比上一年減少4萬元.2012年初,該面包廠一次性投入90萬元開發(fā)新項(xiàng)目,預(yù)測(cè)在未扣除開發(fā)所投入資金的情況下,第年(為正整數(shù),2012年為第一年)的利潤為萬元.設(shè)從2012年起的前年,該廠不開發(fā)新項(xiàng)目的累計(jì)利潤為萬元,開發(fā)新項(xiàng)目的累計(jì)利潤為萬元(須扣除開發(fā)所投入資金).
(1)求的表達(dá)式;
(2)問該新項(xiàng)目的開發(fā)是否有效(即開發(fā)新項(xiàng)目的累計(jì)利潤超過不開發(fā)新項(xiàng)目的累計(jì)利潤),如果有效,從第幾年開始有效;如果無效,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位設(shè)計(jì)的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識(shí),對(duì)于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時(shí)間內(nèi),在單位面積上通過的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時(shí)間內(nèi),在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)

(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過的熱量(結(jié)果用,表示);
(2)為使雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計(jì)的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ) 若直線y=kx+1與f (x)的反函數(shù)的圖像相切, 求實(shí)數(shù)k的值;
(Ⅱ) 設(shè)x>0, 討論曲線y=f (x) 與曲線 公共點(diǎn)的個(gè)數(shù).
(Ⅲ) 設(shè)a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)計(jì)算:;(2)解方程:log3(6x-9)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在(0,+∞)上的增函數(shù),且滿足.
(1)求的值;      (2)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出。當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛。租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案