精英家教網 > 高中數學 > 題目詳情

【題目】關于旋轉體的體積,有如下的古爾。guldin)定理:平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側,含直線上)旋轉一周所得的旋轉體的體積,等于D的面積與D的幾何中心(也稱為重心)所經過的路程的乘積.利用這一定理,可求得半圓盤,繞直線x旋轉一周所形成的空間圖形的體積為_____

【答案】2π

【解析】

顯然半圓的幾何中心在半圓與x軸的交線上,設幾何中心到原點的距離為x,根據古爾丁(guldin)定理求得球的體積,根據球的體積公式列等式可解得,再根據這一定理即可求得結果.

顯然半圓的幾何中心在半圓與x軸的交線上,設幾何中心到原點的距離為x,

則由題意得:2πx,解得x

所以幾何中心到直線x的距離為:,

所以得到的幾何體的體積為:V=(2π)=2π

故答案為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古達數學名著《九章算術-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網格紙上小正方形的邊長為. 則對該兒何體描述:

①四個側面首飾直角三角形

②最長的側棱長為

③四個側面中有三個側面是全等的直角三角形

④外接球的表面積為

其中正確的個數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《鄭州市城市生活垃圾分類管理辦法》已經政府常務會議審議通過,自2019121日起施行.垃圾分類是對垃圾收集處置傳統(tǒng)方式的改革,是對垃圾進行有效處置的一種科學管理方法.所謂垃圾其實都是資源,當你放錯了位置時它才是垃圾.某企業(yè)在市科研部門的支持下進行研究,把廚余垃圾加工處理為一種可銷售的產品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數關系可近似地表示為,且每加工處理一噸廚余垃圾得到的產品售價為16元.

(Ⅰ)該企業(yè)每周加工處理量為多少噸時,才能使每噸產品的平均加工處理成本最低?

(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤的最大值;如果不獲利,則需要市政府至少補貼多少元才能使該企業(yè)不虧損?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,下頂點為,為橢圓的左、右焦點,過右焦點的直線與橢圓交于兩點,且的周長為.

(I)求橢圓的方程;

(II)經過點的直線與橢圓交于不同的兩點 (均異于點),試探求直線的斜率之和是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的漸近線方程為,一個焦點為

1)求雙曲線的方程;

2)過雙曲線上的任意一點,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個定值;

3)設直線在第一象限內與漸近線所圍成的三角形繞著軸旋轉一周所得幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11,ABm,點M是棱CD的中點.

1)求異面直線B1CAC1所成的角的大。

2)是否存在實數m,使得直線AC1與平面BMD1垂直?說明理由;

3)設P是線段AC1上的一點(不含端點),滿足λ,求λ的值,使得三棱錐B1CD1C1與三棱錐B1CD1P的體積相等.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩直線方程,點上運動,點上運動,且線段的長為定值.

(Ⅰ)求線段的中點的軌跡方程;

(Ⅱ)設直線與點的軌跡相交于,兩點,為坐標原點,若,求原點的直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方形的邊長為2,分別為,的中點,以為折痕把折起,使點到達點的位置,平面平面.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案