18.在含有3件次品的100件產(chǎn)品中,任取2件,求:
(Ⅰ)取到的次品數(shù)X的分布列(分布列中的概率值用分?jǐn)?shù)表示,不能含組合符號);
(Ⅱ)至少取到1件次品的概率.

分析 (Ⅰ)從100件產(chǎn)品中任取2件的結(jié)果數(shù)為$C_{100}^2$,X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列.
(Ⅱ)根據(jù)隨機變量X的分布列,能求出至少取到1件次品的概率.

解答 (本題滿分12分)
解:(Ⅰ)因為從100件產(chǎn)品中任取2件的結(jié)果數(shù)為$C_{100}^2$,
從100件產(chǎn)品中任取2件其中恰有k件次品的結(jié)果數(shù)為$C_3^kC_{97}^{2-k}$,
所以從100件產(chǎn)品中任取2件,其中恰有k件次品的概率為$P(X=k)=\frac{{C_3^kC_{97}^{2-k}}}{{C_{100}^2}},k=0,1,2$.
P(X=0)=$\frac{{C}_{3}^{0}{C}_{97}^{2}}{{C}_{100}^{2}}=\frac{776}{825}$,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{97}^{1}}{{C}_{100}^{2}}$=$\frac{97}{1650}$,
P(X=2)=$\frac{{C}_{3}^{2}{C}_{97}^{0}}{{C}_{100}^{2}}$=$\frac{1}{1650}$,(4分)
∴X的分布列為:

X012
P$\frac{776}{825}$$\frac{97}{1650}$$\frac{1}{1650}$
(8分)
(Ⅱ)根據(jù)隨機變量X的分布列,
可得至少取到1件次品的概率為:
P(X≥1)=P(X=1)+P(X=2)=$\frac{97}{1650}+\frac{1}{1650}=\frac{49}{825}$.(12分)

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線y=x+b與曲線(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共點,則實數(shù)b的取值范圍是( 。
A.[1-2$\sqrt{2}$,3]B.[1-$\sqrt{2}$,3]C.[-1,1+2$\sqrt{2}$]D.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={1,2,3},B={2,3},則( 。
A.A?BB.A=BC.A∪B=∅D.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax的圖象過點$(1,\;\frac{1}{2})$,且點$(n-1,\;\frac{a_n}{n^2})(n∈{N^*})$在函數(shù)f(x)=ax的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}=\frac{a_n}{n}$,若數(shù)列{bn}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F為雙曲線$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$的一個焦點,則點F到C的一條漸近線的距離為(  )
A.$\sqrt{3}$B.3C.$\sqrt{3}a$D.3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在正方體AC1中,若過A、C、B1三點的平面與底面A1B1C1D1的交線為l,則l與AC的位置關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,點$R({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{14}}}{4}})$在橢圓上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線y=k(x-1)(k≠0)與橢圓交于A,B兩點,點M是橢圓C的右頂點,直線AM與直線BM分別與軸交于點P,Q,求|OP|•|OQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,A、B、C所對的邊分別為a、b、c,若a2+b2+2c2=8,則△ABC面積的最大值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式|x-3|+|x+1|<8的解集為(-3,5).

查看答案和解析>>

同步練習(xí)冊答案