是首項為,公差為的等差數(shù)列(),是前項和. 記,其中為實數(shù).
(1)若,且,,成等比數(shù)列,證明:;
(2)若是等差數(shù)列,證明.
見解析

[證明](1)由題設,,由,得,又,,成等比數(shù)列,∴,即,化簡得,∵,∴.
因此對于所有的,
從而對于所有的.
(2)設數(shù)列的公差為,則,即,,
代入的表達式,整理得,對于所有的
,,則對于所有的,
在上式中取
,
從而有,由②③得代入①得,
從而,即,,,
,則由,與題設矛盾,∴,又,∴.
【考點定位】本小題主要考查等差、等比數(shù)列的定義、通項、求和等基礎知識,考查分析轉化以及推理論證能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

是公比為q的等比數(shù)列.
(Ⅰ) 推導的前n項和公式;
(Ⅱ) 設q≠1, 證明數(shù)列不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中的、是函數(shù)的極值點,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

公差不為0的等差數(shù)列的第2,3,6項依次構成一等比數(shù)列,該等比數(shù)列的公比=_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知已知是等差數(shù)列,期中
求: 1.的通項公式
2.數(shù)列從哪一項開始小于0?
3.求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為等差數(shù)列的前項和,,則=(  )
A.B.
C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,則等于
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),和數(shù)列1,,,()提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,已知,則為  ( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案