9.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}-(x+3)(x-1),x≤a\\{2^x}-2\;\;\;\;\;\;\;\;\;\;\;\;,x>a.\end{array}\right.$
①若a=1,則f(x)的零點(diǎn)個(gè)數(shù)為2;
②若f(x)恰有1個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-3).

分析 把函數(shù)y=-(x+3)(x-1),y=2x-2的圖象畫在同一直角坐標(biāo)系中.直線x=a在平移過程中,可得到函數(shù)f(x)與x軸的不同交點(diǎn)個(gè)數(shù).

解答 解:把函數(shù)y=-(x+3)(x-1),y=2x-2的圖象畫在同一直角坐標(biāo)系中.如圖所示:
直線x=a在平移過程中,可得到函數(shù)f(x)與x軸的不同交點(diǎn)個(gè)數(shù),①若a=1,則f(x)的零點(diǎn)個(gè)數(shù)為:2
②若f(x)恰有1個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是:a<-3.
故答案為:2,(-∞,-3)

點(diǎn)評(píng) 題主要考查函數(shù)的圖象的交點(diǎn)以及數(shù)形結(jié)合方法,數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又在區(qū)間[0,1]上單調(diào)遞增的是( 。
A.y=cosxB.y=-x2C.$y={(\frac{1}{2})^{|x|}}$D.y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線$f(x)=lnx+\frac{x^2}{a}$在點(diǎn)(1,f(1))處的切線的傾斜角為$\frac{3π}{4}$,則a的值為( 。
A.1B.-4C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“m=5,n=4”是“橢圓$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$的離心率為$e=\frac{3}{5}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)滿足:集合A={f(n)|n∈N*}中至少存在三個(gè)不同的數(shù)構(gòu)成等差數(shù)列,則稱函數(shù)f(x)是等差源函數(shù).判斷下列函數(shù):
①y=log2x;
②y=2x;
③y=$\frac{1}{x}$中,
所有的等差源函數(shù)的序號(hào)是( 。
A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示圖形邊界上的整點(diǎn)(橫、縱坐標(biāo)都是整數(shù)的點(diǎn))的集合,集合D={(6,0),(-6,0),(0,4),(0,-4),(4,-4),(-4,4),(2,-2),(-2,2)}.規(guī)定:
(1)對(duì)于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(2)對(duì)于任意的k∈N*,序列ak,bk滿足:
①ak∈Ω,bk∈D
②a1=(0,0),ak=ak-1+bk-1,k≥2,k∈N*
(Ⅰ) 求a2
(Ⅱ) 證明:?k∈N*,ak≠(5,0)
(Ⅲ) 若ak=(6,2),寫出滿足條件的k的最小值及相應(yīng)的a1,a2,…,ak

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.甲袋中有16個(gè)白球和17個(gè)黑球,乙袋中有31個(gè)白球,現(xiàn)每次任意從甲袋中摸出兩個(gè)球,如果兩球同色,則將這兩球放進(jìn)丙袋,并從乙袋中拿出一白球放回甲袋;如果兩球不同色,則將白球放進(jìn)丙袋,并把黑球放回甲袋.那么這樣拿     次后,甲袋中只剩一個(gè)球,這個(gè)球的顏色是      ( 。
A.16,黑色B.16,白色或黑色C.32,黑色D.32,白色

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an} 滿足an+1-an=2,n∈N*,且a3=3,則a1=-1,其前n 項(xiàng)和Sn=n2-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線以△ABC的頂點(diǎn)B,C為焦點(diǎn),且經(jīng)過點(diǎn)A,若△ABC內(nèi)角的對(duì)邊分別為a,b,c.且a=4,b=5,$c=\sqrt{21}$,則此雙曲線的離心率為(  )
A.$5-\sqrt{21}$B.$\frac{{\sqrt{21}+5}}{2}$C.$5+\sqrt{21}$D.$\frac{{5-\sqrt{21}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案