如圖,在四棱錐中,⊥平面,為的中點(diǎn),為 的中點(diǎn),底面是菱形,對角線,交于點(diǎn).
求證:(1)平面平面;
(2)平面⊥平面.
(1)先利用線面平行的判定定理證明平面,平面,即得證
(2)先利用線面垂直的判定定理證明⊥平面,即得證
【解析】
試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052408324690722368/SYS201305240833157510384684_DA.files/image006.png">為的中點(diǎn),為的中點(diǎn),所以
又平面,平面,所以平面 ……4分
同理可證,平面,又
所以,平面平面. ……7分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052408324690722368/SYS201305240833157510384684_DA.files/image007.png">⊥平面,平面,所以 ……9分
因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052408324690722368/SYS201305240833157510384684_DA.files/image015.png">是菱形,所以,又
所以⊥平面 ……12分
又平面,所以平面⊥平面. ……14分
考點(diǎn):本小題主要考查線面平行和線面垂直的判定.
點(diǎn)評(píng):要解決此類問題,要充分發(fā)揮空間想象能力,緊扣相應(yīng)的判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來,缺一不可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐中,底面是矩形,平面,,.以的中點(diǎn)為球心、為直徑的球面交于點(diǎn).
(1)求證:平面⊥平面;
(2)求直線與平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省成都高新區(qū)高三10月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面為菱形,,為的中點(diǎn)。
(1)若,求證:平面;
(2)點(diǎn)在線段上,,試確定的值,使;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高一年級(jí)期末測試試卷數(shù)學(xué) 題型:解答題
(12分)如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面,為AD的中點(diǎn),是棱上的點(diǎn),,.(1)若點(diǎn)是棱的中點(diǎn),求證:
// 平面;(2)求證:平面⊥平面。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com