【題目】年中央電視臺(tái)在周日晚上推出的一檔新的綜藝節(jié)目,為了解節(jié)目效果,一次節(jié)目結(jié)束后,現(xiàn)隨機(jī)抽取了名觀眾(含名女性)的評(píng)分(百分制)進(jìn)行分析,分別得到如圖所示的兩個(gè)頻率分布直方圖.
(1)計(jì)算女性觀眾評(píng)分的中位數(shù)與男性觀眾評(píng)分的平均分;
(2)若把評(píng)分低于分定為“不滿意”,評(píng)分不低于分定為“滿意”.
(i)試比較男觀眾與女觀眾不滿意的概率大小,并說(shuō)明理由;
(ii)完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別和對(duì)該綜藝節(jié)目是否滿意有關(guān).
女性觀眾 | 男性觀眾 | 合計(jì) | |
“滿意” | |||
“不滿意” | |||
合計(jì) |
參考數(shù)據(jù):
【答案】(1)女性觀眾評(píng)分的中位數(shù)為,男性觀眾評(píng)分的平均數(shù)為(2)(i)男性觀眾不滿意的概率大,詳見(jiàn)解析(ii)填表見(jiàn)解析;有的把握認(rèn)為性別和對(duì)該綜藝節(jié)目是否滿意有關(guān)
【解析】
(1)根據(jù)所給數(shù)據(jù),即可求得中位數(shù)和平均數(shù),即可求得答案;
(2)記表示事件:“女性觀眾不滿意”;表示事件:“男性觀眾不滿意”,由直方圖求得和,即可比較男觀眾與女觀眾不滿意的概率大小. 完成下列列聯(lián)表,計(jì)算出,結(jié)合已知,即可求得答案.
(1)根據(jù)題意,設(shè)女性觀眾評(píng)分的中位數(shù)為,
,
.
男性觀眾評(píng)分的平均數(shù)為.
(2)(i)男性觀眾不滿意的概率大,
記表示事件:“女性觀眾不滿意”;表示事件:“男性觀眾不滿意”,由直方圖得的估計(jì)值為,
的估計(jì)值為,
所以男性觀眾不滿意的概率大.
(ii)列聯(lián)表如下圖:
女性觀眾 | 男性觀眾 | 合計(jì) | |
“滿意” | |||
“不滿意” | |||
合計(jì) |
所以
故有的把握認(rèn)為性別和對(duì)該綜藝節(jié)目是否滿意有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的圖象上存在兩個(gè)不同的點(diǎn)、,使得曲線在這兩點(diǎn)處的切線重合,稱(chēng)函數(shù)具有性質(zhì).下列函數(shù)中具有性質(zhì)的有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在其定義域內(nèi)給定區(qū)間上存在實(shí)數(shù).滿足,則稱(chēng)函數(shù)是區(qū)間上的“平均值函數(shù)”,是它的一個(gè)均值點(diǎn).
(1)判斷函數(shù)是否是區(qū)間上的“平均值函數(shù)”,并說(shuō)明理由
(2)若函數(shù)是區(qū)間上的“平均值函數(shù)”,求實(shí)數(shù)的取值范圍.
(3)設(shè)函數(shù)是區(qū)間上的“平均值函數(shù)”,1是函數(shù)的一個(gè)均值點(diǎn),求所有滿足條件實(shí)數(shù)對(duì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有n個(gè)班(n為給定正整數(shù)),且每班的男生與女生人數(shù)至多相差1.現(xiàn)該學(xué)校進(jìn)行乒乓球比賽,規(guī)則如下:同一班的選手之間不比賽,不同班的每?jī)擅x手都比賽一場(chǎng).我們稱(chēng)在同性別選手間的比賽為同打,異性別選手間的比賽為異打.若同打場(chǎng)數(shù)與異打場(chǎng)數(shù)至多相差1,求有奇數(shù)名學(xué)生的班級(jí)至多有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《史記》中講述了田忌與齊王賽馬的故事:“田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬”.若雙方各自擁有上、中、下等馬各1匹,從中隨機(jī)選1匹進(jìn)行1場(chǎng)比賽,則齊王的馬獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件A,B是獨(dú)立事件的是( )
A. 一枚硬幣擲兩次,A=“第一次為正面向上”,B=“第二次為反面向上”
B. 袋中有兩個(gè)白球和兩個(gè)黑球,不放回地摸兩球,A=“第一次摸到白球”,B=“第二次摸到白球”
C. 擲一枚骰子,A=“出現(xiàn)點(diǎn)數(shù)為奇數(shù)”,B=“出現(xiàn)點(diǎn)數(shù)為偶數(shù)”
D. A=“人能活到20歲”,B=“人能活到50歲”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若兩條互相垂直的直線都經(jīng)過(guò)原點(diǎn)(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(diǎn)(異于原點(diǎn)),且,求這兩條直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家面包房根據(jù)以往某種面包的銷(xiāo)售記錄,繪制了日銷(xiāo)售量的頻率分布直方圖,如圖231所示.
圖231
將日銷(xiāo)售量落入各組的頻率視為概率,并假設(shè)每天的銷(xiāo)售量相互獨(dú)立.
(1)求在未來(lái)連續(xù)3天里,有連續(xù)2天的日銷(xiāo)售量都不低于100個(gè)且另1天的日銷(xiāo)售量低于50個(gè)的概率;
(2)用X表示在未來(lái)3天里日銷(xiāo)售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com