17.若指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(diǎn)(3,8),則f(-1)的值為$\frac{1}{2}$.

分析 先根據(jù)指數(shù)函數(shù)過點(diǎn)(3,8)求出a的值,再代入計(jì)算即可.

解答 解:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過點(diǎn)(3,8),
∴8=a3,
解得a=2,
∴f(x)=2x,
∴f(-1)=2-1=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{4}+\frac{y^2}{m}=1$過點(diǎn)B(0,4),則此橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離的和是( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)三棱柱ABC-A1B1C1體積為V,E,F(xiàn),G分別是AA1,AB,AC的中點(diǎn),則三棱錐E-AFG體積是( 。
A.$\frac{1}{6}V$B.$\frac{1}{12}V$C.$\frac{1}{16}V$D.$\frac{1}{24}V$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)1-2i的虛部是(  )
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在銳角△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別是a,b,c.已知sinAsinC=$\frac{3}{4}$,b2=ac.
(1)求角B的值;
(2)若b=$\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$則f(log214)+f(-4)的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z滿足$\frac{z}{1+i}=1-i$(i為純虛數(shù)),那么復(fù)數(shù)z=( 。
A.1B.2C.iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知Sn為各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和,a1∈(0,2),an2+3an+2=6Sn
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若對?n∈N*,t≤4Tn恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=-\frac{1}{3}{x^3}+2a{x^2}-3{a^2}x$(a∈R且a≠0).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在(-2,f(-2))處的切線方程;
(2)當(dāng)a>0時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(3)當(dāng)x∈[2a,2a+2]時(shí),不等式|f'(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案