12.在銳角△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別是a,b,c.已知sinAsinC=$\frac{3}{4}$,b2=ac.
(1)求角B的值;
(2)若b=$\sqrt{3}$,求△ABC的周長.

分析 (1)由b2=ac,利用正弦定理,結(jié)合sinAsinC=$\frac{3}{4}$,求出sinB,即可求角B的大。
(2)由已知利用余弦定理可求a+c的值,進(jìn)而可求周長的值.

解答 (本題滿分為10分)
解:(1)因?yàn)閎2=ac,
所以由正弦定理得sin2B=sinAsinC.
因?yàn)閟inAsinC=$\frac{3}{4}$,
所以sin2B=$\frac{3}{4}$.
因?yàn)閟inB>0,
所以sinB=$\frac{\sqrt{3}}{2}$.
因?yàn)?<B<$\frac{π}{2}$,
所以B=$\frac{π}{3}$. …(5分)
(2)因?yàn)椋築=$\frac{π}{3}$,b=$\sqrt{3}$,b2=ac
所以:由余弦定理可得:3=a2+c2-ac=(a+c)2-3ac=(a+c)2-9,
解得:a+c=2$\sqrt{3}$,
所以:△ABC的周長為:a+b+c=2$\sqrt{3}$+$\sqrt{3}$=3$\sqrt{3}$…(10分)

點(diǎn)評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“?x>0,lnx>0”的否定是( 。
A.?x>0,lnx>0B.?x>0,lnx>0C.?x>0,lnx≥0D.?x>0,lnx≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l1:3x-y+2=0,l2:x+my-3=0,若l1⊥l2,則m的值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題“若a>b,則ac>bc”(a,b,c都是實(shí)數(shù))與它的逆命題、否命題和逆否命題中,真命題的個數(shù)是( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sin($\frac{π}{2}+α$)=-$\frac{3}{5}$,$α∈(\frac{π}{2},π)$,則tanα=( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(diǎn)(3,8),則f(-1)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時,每噸為2.6元,當(dāng)用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)34.7元,分別求甲、乙兩戶該月的用水量和水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$為純虛數(shù),則實(shí)數(shù)a的值為4.

查看答案和解析>>

同步練習(xí)冊答案