【題目】已知集合M是滿(mǎn)足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使函數(shù)成立;
(1)請(qǐng)給出一個(gè)的值,使函數(shù)
(2)函數(shù)是否是集合M中的元素?若是,請(qǐng)求出所有組成的集合;若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)函數(shù),求實(shí)數(shù)a的取值范圍.
【答案】(1)=2;(2)是,(3)或
【解析】
(1)利用列不等式,由此求得的一個(gè)取值.
(2)假設(shè)存在符合題意,驗(yàn)證,由此判斷出的所有可能取值.
(3)利用列不等式,對(duì)分成三種情況進(jìn)行分類(lèi)討論,由此求得的取值范圍.
(1)當(dāng)時(shí),依題意在定義域內(nèi)存在,使函數(shù)成立,而,即,即,故可取,此時(shí).
(2)假設(shè)存在符合題意,而,即,即,化簡(jiǎn)得,解得.所以函數(shù)是集合M中的元素,且.
(3)由于函數(shù),,由,得①,.
當(dāng)時(shí),①成立.
當(dāng)時(shí),①的左邊為負(fù)數(shù),右邊為正數(shù),即①成立.
當(dāng)時(shí),①可化為,也即存在,使②成立.
當(dāng)時(shí),顯然存在,使②成立;
當(dāng)時(shí),②化為,顯然存在,使②成立.
當(dāng),即時(shí),不等式對(duì)應(yīng)的一元二次方程,開(kāi)口向下,且判別式,由于,所以,所以不存在,使②成立.
綜上所述,實(shí)數(shù)的取值范圍是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)曲線(xiàn)在點(diǎn)處的切線(xiàn)垂直于直線(xiàn):,求的值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年雙11當(dāng)天,某購(gòu)物平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿(mǎn)意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿(mǎn)意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】絕對(duì)值|x﹣1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對(duì)于實(shí)數(shù)a,b,的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.
(1)直接寫(xiě)出與的最小值,并寫(xiě)出取到最小值時(shí)x滿(mǎn)足的條件;
(2)設(shè)a1≤a2≤…≤an是給定的n個(gè)實(shí)數(shù),記S=.試猜想:若n為奇數(shù),則當(dāng)x∈ 時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x∈ 時(shí),S取到最小值;(直接寫(xiě)出結(jié)果即可)
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:
(1)求過(guò)點(diǎn)且與圓相切的直線(xiàn)方程.
(2)若為圓上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐B-AEDC中,平面AEDC⊥平面ABC,F(xiàn)為BC的中點(diǎn),P為BD的中點(diǎn),且AE//DC,∠ACD=∠BAC=90°,DC=AC=AB=2AE
(1)證明:EP⊥平面BCD;
(2)若DC=2,求三棱錐E-BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線(xiàn),,C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形中,是的中點(diǎn),點(diǎn)在線(xiàn)段上,且.若將 分別沿折起,使兩點(diǎn)重合于點(diǎn),如圖2.
圖1 圖2
(1)求證:平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com