方程 
x2
4-k
+
y2
k-1
=1
表示的曲線為C,給出下列四個命題:
①若1<k<4,則曲線C為橢圓;     
②若曲線C為雙曲線,則k<1或k>4;
③若曲線C表示焦點在x軸上的橢圓,則1<k<
5
2
;   
④曲線C不可能表示圓的方程.
其中正確命題的序號是
 
分析:據(jù)橢圓方程的特點列出不等式求出k的范圍判斷出①錯③對,據(jù)雙曲線方程的特點列出不等式求出k的范圍,判斷出②對;據(jù)橢圓方程的特點列出不等式求出t的范圍,判斷出④錯.
解答:解:若C為橢圓應該滿足
(4-k)(k-1)>0
4-k≠k-1
即1<k<4 且k≠
5
2
故①錯;
若曲線C表示焦點在x軸上的橢圓,則
4-k>k-1
k-1>0
即:1<k<
5
2
; 故③對;
若C為雙曲線應該滿足(4-k)(k-1)<0即k>4或k<1 故②對
若C表示圓,應該滿足4-k=k-1>0則 k=
5
2
,故④不對
故答案為:②③.
點評:橢圓方程的形式:焦點在x軸時
x2
a2
+
y2
b2
=1(a>b>0)
,焦點在y軸時
x2
b2
+
y2
a2
=1(a>b>0)
;雙曲線的方程形式:焦點在x軸時
x2
a2
-
y2
b2
=1
;焦點在y軸時
y2
b2
-
x2
a2
=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法中
①設定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②命題“每個指數(shù)函數(shù)都是單調(diào)函數(shù)”是全稱命題,而且是真命題.
③離心率為
1
2
,長軸長為8的橢圓標準方程為
x2
16
+
y2
12
=1

④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標是(±1,0).
其中正確的為
②④
②④
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中
①設定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②命題“每個指數(shù)函數(shù)都是單調(diào)函數(shù)”是全稱命題,而且是真命題.
③離心率為
1
2
,長軸長為8的橢圓標準方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標是(±1,0).
其中正確的為
②④
②④
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下各個關于圓錐曲線的命題中
①設定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有3條;
③離心率為
1
2
,長軸長為8的橢圓標準方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標是(±1,0).
其中真命題的序號為
②④
②④
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中所有正確命題的序號為
①②
①②

①當a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P(-2,3);
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1

③拋物線y=ax2(a≠0)的焦點坐標為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列四個命題,其中所有正確命題的序號為______.
①當a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P(-2,3);
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點坐標為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

同步練習冊答案