提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

(1)由題意:當(dāng)0≤x≤20時(shí),v(x)=60;
當(dāng)20≤x≤200時(shí),設(shè)v(x)=axb
再由已知得解得
故函數(shù)v(x)的表達(dá)式為v(x)=
(2)依題意并由(1)可得f(x)=
當(dāng)0≤x≤20時(shí),f(x)為增函數(shù),故當(dāng)x=20時(shí),其最大值為60×20=1200;
當(dāng)20≤x≤200時(shí),f(x)=x(200-x)=.
所以,當(dāng)x=100時(shí),f(x)在間[20,200]上取得最大值.
綜上,當(dāng)x=100時(shí),f(x)在區(qū)間[0,200]上取得最大值≈3333.
當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3333輛/小時(shí).

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若集合,
(Ⅰ)若,求集合;
(Ⅱ)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1) 若,求的取值范圍;
(2) 求的最值,并給出取最值時(shí)對(duì)應(yīng)的的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù)
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分) 對(duì)于函數(shù)fx),若存在x0∈R,使fx0)=x0成立, 則稱x0fx)的不動(dòng)點(diǎn).  已知函數(shù)fx)=ax2+(b+1)x+b-1(a≠0)
(1)當(dāng)a=1,b=-2時(shí),求fx)的不動(dòng)點(diǎn);
(2)若對(duì)于任意實(shí)數(shù)b,函數(shù)fx)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)的定義,且滿足對(duì)任意
有:
,的值。
判斷的奇偶性并證明
如果,,且上是增函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

 (本小題滿分10分)記函數(shù)的定義域?yàn)?,
 的定義域?yàn)锽
(I)求集合A
(II)若,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算下列各式
(Ⅰ) 
(Ⅱ)

查看答案和解析>>

同步練習(xí)冊(cè)答案