甲、乙、丙三所學(xué)校的6名學(xué)生參加數(shù)學(xué)競賽培訓(xùn),其中有1名甲學(xué)校的學(xué)生,2名乙學(xué)校的學(xué)生,3名丙學(xué)校的學(xué)生,培訓(xùn)結(jié)束后要照相留念,要求同一學(xué)校的學(xué)生互不相鄰,則不同的排法種數(shù)為
 
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:甲乙丙三所學(xué)校的6位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),其中甲有1名,乙有2名,丙有3名分兩類:第一類是甲乙兩個學(xué)校的三個學(xué)生分別被丙學(xué)校的三個學(xué)生分別隔開,第二類是甲乙兩個學(xué)校中其中一名學(xué)生相鄰,根據(jù)分類計數(shù)計數(shù)原理可得
解答: 解:甲乙丙三所學(xué)校的6位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),其中甲有1名,乙有2名,丙有3名分兩類:
第一類是甲乙兩個學(xué)校的三個學(xué)生分別被丙學(xué)校的三個學(xué)生分別隔開有2A33A33=72
第二類是甲乙兩個學(xué)校中其中一名學(xué)生相鄰有A33C21A22A22=48
根據(jù)分類計數(shù)計數(shù)原理得共有72+48=120種.
故答案為:120.
點評:本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

m
=(sinωx,cosωx)
n
=(
3
cosωx,-cosωx)(ω>0)
,記f(x)=
m
n
,已知y=f(x)圖象的兩條相鄰對稱軸之間的距離為
π
4

(Ⅰ)求ω的值;
(Ⅱ)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-5,0),N(5,0)是平面上的兩點,若曲線C上至少存在一點P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線:
y2
16
-
x2
9
=1;
x2
4
+
y2
9
=1;          
x2
4
-
y2
9
=1;
④y2=4x;
⑤x2+y2=9.
其中為“黃金曲線”的是
 
.(寫出所有“黃金曲線”的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(α+
π
3
)=-
4
5
,則sin(α-
π
6
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高中數(shù)學(xué)競賽培訓(xùn)在某學(xué)段共開設(shè)有初等代數(shù)、平面幾何、初等數(shù)論和微積分初步共四門課程,要求初等數(shù)論、平面幾何都要合格,且初等代數(shù)和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格.現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同(見下表),且每一門課程是否合格相互獨立.
課     程[來初等代數(shù)平面幾何初等數(shù)論微積分初步
合格的概率
2
3
3
4
2
3
1
2
(Ⅰ)求乙同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(Ⅱ)記ξ表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=tan(x+
π
6
),則f(x)的最小正周期為
 
;f(
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
1
,
a
2
,
a
3
,…
a
n
滿足如下條件:
a
n
-
a
n-1
=
d
(n=2,3,4,…),
d
a1
的夾角為
3
,且|
a
1
|=4|
d
|=2
,則數(shù)列|
a
1
|,|
a
2
|,|
a
3
|,…|
a
n
|…
中最小的項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos2x+1的圖象向右平移
π
4
個單位,再向下平移一個單位后得到y(tǒng)=f(x)的圖象,則函數(shù)f(x)=( 。
A、cos(2x+
π
4
B、cos(2x-
π
4
C、sin2x
D、-sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x3-2x+3的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊答案