若實(shí)數(shù)x,y滿足xy=1,則x2+2y2的最小值為
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由已知可得y=
1
x
,代入要求的式子,由基本不等式可得.
解答: 解:∵xy=1,
∴y=
1
x

∴x2+2y2=x2+
2
x2
≥2
x2
2
x2
=2
2
,
當(dāng)且僅當(dāng)x2=
2
x2
,即x=±
42
時(shí)取等號(hào),
故答案為:2
2
點(diǎn)評(píng):本題考查基本不等式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)范圍內(nèi),不等式||x-2|-1|≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A是兩條平行直線l1,l2之間的一個(gè)定點(diǎn),且A到l1,l2的距離分別為AM=1,AN=2,設(shè)△ABC的另兩個(gè)頂點(diǎn)B,C分別在l1,l2上運(yùn)動(dòng),且AB<AC,
AB
cos∠ABC
=
AC
cos∠ACB
,則以下結(jié)論正確的序號(hào)是
 

①△ABC是直角三角形;
1
AB
+
2
AC
的最大值為
2
;
③(S四邊形MBCNmin=(S△ABCmin+(S△AMB+S△ACNmin;
④設(shè)△AMB的周長為y1,△ACN的周長為y2,則(y1+y2min=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,過定點(diǎn)Q(1,1)的直線l與曲線C:y=
x
x-1
交于M,N點(diǎn),則
ON
OQ
-
MQ
OQ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓C1的方程為ρ=4
2
cos(θ-
π
4
),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程是
x=-1+acos θ
y=-1+asin θ
(θ為參數(shù)),若圓C1與圓C2外切,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知互異的復(fù)數(shù)a,b滿足ab≠0,集合{a,b}={a2,b2},則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2-|2x-3|∈N*,x∈N*},則集合A的子集數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序運(yùn)行后,輸出的值是( 。
A、9B、-4C、14D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)為偶函數(shù),x>0時(shí),f(x)單調(diào)遞增,P=f(-π),Q=f(e),R=f(
2
),則P,Q,R的大小為( 。
A、R>Q>P
B、P>Q>R
C、P>R>Q
D、Q>R>P

查看答案和解析>>

同步練習(xí)冊(cè)答案