設(shè)點(diǎn)M(m,0)在橢圓的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng)的模最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.
【答案】分析:設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),由于橢圓方程可得-4≤x≤4.由,結(jié)合向量數(shù)量積的性質(zhì)可得=,結(jié)合二次函數(shù)的性質(zhì)及橢圓的性質(zhì)可知,取得最小值4m≥4,結(jié)合點(diǎn)M在橢圓的長(zhǎng)軸上,可求m得范圍
解答:解:設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故-4≤x≤4.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182919629996161/SYS201310241829196299961015_DA/5.png">,所以
推出=
依題意可知,當(dāng)x=4時(shí),取得最小值.而x∈[-4,4],
故有4m≥4,解得m≥1.
又點(diǎn)M在橢圓的長(zhǎng)軸上,即-4≤m≤4.故實(shí)數(shù)m的取值范圍是m∈[1,4].
點(diǎn)評(píng):本題主要考查了橢圓的性質(zhì)的應(yīng)用,解題中要注意橢圓的范圍與二次函數(shù)的性質(zhì)的應(yīng)用是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
9
+
y2
4
=1
內(nèi)一點(diǎn)M(2,0)引橢圓的動(dòng)弦AB,則弦AB的中點(diǎn)N的軌跡方程是
(x-1)2+
9
4
y2=1
(x-1)2+
9
4
y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:貴州省云峰中學(xué)2010屆高三下學(xué)期3月月考數(shù)學(xué)試題 題型:044

已知橢圓x2=1(b∈(0,1))的左焦點(diǎn)為F,左右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過(guò)F,B,C三點(diǎn)作圓P,其中圓心P的坐標(biāo)為(m,n)

(1)當(dāng)m+n>0時(shí),橢圓的離心率的取值范圍

(2)直線AB能否和圓P相切?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

過(guò)橢圓數(shù)學(xué)公式內(nèi)一點(diǎn)M(2,0)引橢圓的動(dòng)弦AB,則弦AB的中點(diǎn)N的軌跡方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市高二(上)期末數(shù)學(xué)模擬試卷(3)(解析版) 題型:填空題

過(guò)橢圓內(nèi)一點(diǎn)M(2,0)引橢圓的動(dòng)弦AB,則弦AB的中點(diǎn)N的軌跡方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案