【題目】【2018屆江蘇省泰州中學(xué)高三12月月考】已知橢圓的中心為坐標(biāo)原點(diǎn),橢圓短軸長(zhǎng)為,動(dòng)點(diǎn)()在橢圓的準(zhǔn)線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長(zhǎng)為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),求證:線段的長(zhǎng)為定值,并求出這個(gè)定值.
【答案】(1) (2) 圓的方程為 (3)
【解析】試題分析:(1)由已知可得b,又M在準(zhǔn)線上,可得a,c關(guān)系,解方程即可求出a,寫出橢圓標(biāo)準(zhǔn)方程;(2)利用直線與圓相交所得弦心距、半弦長(zhǎng)、半徑所成直角三角形可得出圓的方程;(3)由平幾知: ,將OK,OM表示出來(lái),代入上式整理即可求出線段的長(zhǎng)為定值2.
試題解析:
(1)由,得
又由點(diǎn)在準(zhǔn)線上,得,故,∴從而
所以橢圓方程為
(2)以為直徑的圓的方程為
其圓心為,半徑
因?yàn)橐?/span>為直徑的圓被直線截得的弦長(zhǎng)為
所以圓心到直線的距離
所以,解得
所以圓的方程為
(3)由平幾知:
直線: ,直線:
由得∴
所以線段的長(zhǎng)為定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856289)[選修4-4:坐標(biāo)系與參數(shù)方程]
直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為: (t為參數(shù)) .
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點(diǎn)P為圓C上動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某校為幫扶困難同學(xué),采用如下方式進(jìn)行一次募捐:在不透明的箱子中放入大小均相同的白球七個(gè),紅球三個(gè),每位獻(xiàn)愛心的參與者投幣20元有一次摸獎(jiǎng)機(jī)會(huì),一次性從箱子中摸球三個(gè)(摸完球后將球放回),若有一個(gè)紅球,獎(jiǎng)金10元,兩個(gè)紅球獎(jiǎng)金20元,三個(gè)全是紅球獎(jiǎng)金100元.
(1)求獻(xiàn)愛心參與者中將的概率;
(2)若該次募捐900位獻(xiàn)愛心參與者,求此次募捐所得善款的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g=-sinxcosx-sin2x,將其圖象向左移個(gè)單位,并向上移個(gè)單位,得到函數(shù)f=acos2+b的圖象.
(Ⅰ)求實(shí)數(shù)a,b, 的值;
(Ⅱ)設(shè)函數(shù)φ=g-f,x∈,求函數(shù)φ的單調(diào)遞增區(qū)間和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對(duì)該店鋪中的五種商品有購(gòu)買意向.已知該網(wǎng)民購(gòu)買兩種商品的概率均為,購(gòu)買兩種商品的概率均為,購(gòu)買種商品的概率為.假設(shè)該網(wǎng)民是否購(gòu)買這五種商品相互獨(dú)立.
(1)求該網(wǎng)民至少購(gòu)買4種商品的概率;
(2)用隨機(jī)變量表示該網(wǎng)民購(gòu)買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856299)已知雙曲線 (a>0,b>0)的左、右焦點(diǎn)分別是F1,F2,點(diǎn)P是其上一點(diǎn),雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實(shí)軸長(zhǎng)為( )
A. 2 B. C. 2或 D. 1或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856332)
已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點(diǎn),F為CB1的中點(diǎn).
(Ⅰ)證明:平面AEF⊥平面CAA1C1;
(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com