某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品時,總利潤最高?(總利潤=總銷售額-總成本)
(1)P(x)=+40+0.05x,每件產(chǎn)品成本的最小值為90元
(2)生產(chǎn)650件產(chǎn)品時,總利潤最高,最高總利潤為29750元
【解析】【解析】
(1)P(x)=+40+0.05x,
由基本不等式得
P(x)≥2+40=90.
當(dāng)且僅當(dāng)=0.05x,即x=500時,等號成立.
∴P(x)=+40+0.05x,每件產(chǎn)品成本的最小值為90元.
(2)設(shè)總利潤為y元,則
y=xQ(x)-xP(x)=-0.1x2+130x-12500=-0.1(x-650)2+29750.
當(dāng)x=650時,ymax=29750.
答:生產(chǎn)650件產(chǎn)品時,總利潤最高,最高總利潤為29750元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:選擇題
在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c滿足b2=a2+c2-ac,若AC=2,則△ABC面積的最大值為( )
A. B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:解答題
已知函數(shù)f(x)=2cos2x+sin2x-+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若x∈[-,],求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-3三角函數(shù)的圖象與性質(zhì)(解析版) 題型:填空題
設(shè)函數(shù)y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期為π,且其圖象關(guān)于直線x=對稱,則在下面四個結(jié)論中:①圖象關(guān)于點(,0)對稱;②圖象關(guān)于點(,0)對稱;③在[0,]上是增函數(shù);④在[-,0]上是增函數(shù),所有正確結(jié)論的編號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-3三角函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題
函數(shù)y=2sin(-2x)(x∈[0,π])的增區(qū)間是( )
A.[0,] B.[,]
C.[,] D.[,π]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-9函數(shù)模型及其應(yīng)用(解析版) 題型:選擇題
某種新藥服用x小時后血液中的殘留量為y毫克,如圖所示為函數(shù)y=f(x)的圖象,當(dāng)血液中藥物殘留量不小于240毫克時,治療有效.設(shè)某人上午8:00第一次服藥,為保證療效,則第二次服藥最遲的時間應(yīng)為( )
A.上午10:00 B.中午12:00
C.下午4:00 D.下午6:00
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:填空題
若平面直角坐標(biāo)系內(nèi)兩點P,Q滿足條件:①P,Q都在函數(shù)f(x)的圖象上;②P,Q關(guān)于原點對稱,則稱點對(P,Q)是函數(shù)f(x)的一個“友好點對”(點對(P,Q)與點對(Q,P)為同一個“友好點對”).已知函數(shù)f(x)=,則f(x)的“友好點對”有________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:填空題
已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:解答題
對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且A,B兩點關(guān)于直線y=kx+對稱,求b的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com