在△ABC中,若tanA•tanB=tanA+tanB+1,則cos(A+B)的值等于( )
A.
B.
C.
D.
【答案】分析:利用兩角和與差的正切函數(shù)公式表示出tan(A+B),把已知的等式變形后代入求出tan(A+B)的值,由A和B為三角形的內角,利用特殊角的三角函數(shù)值可求出A+B的度數(shù),把求出的度數(shù)代入所求式子中,再利用特殊角的三角函數(shù)值即可求出cos(A+B)的值.
解答:解:∵tanA•tanB=tanA+tanB+1,即tanA+tanB=-(1-tanAtanB)
∴tan(A+B)==-1,又A和B為三角形的內角,
∴A+B=135°,
則cos(A+B)=cos135°=-
故選D
點評:此題考查了兩角和與差的正切函數(shù)公式,以及特殊角的三角函數(shù)值,利用了整體代入的思想,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA+tanB+tanC=1,則tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA=-
1
2
,則cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA=-2,則cosA=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD為長方形,AB=2,BC=1,O為AB的中點,在長方形ABCD內隨機取一點,取得的點到O距離大小1的概率為1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,則△ABC是銳角三角形,其中正確命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA=2tanB=3tanC,則cosA的值為
 

查看答案和解析>>

同步練習冊答案