精英家教網 > 高中數學 > 題目詳情
在△ABC中,若tanA=-2,則cosA=(  )
分析:根據tanA的值小于0,得到A為鈍角,利用同角三角函數間的基本關系即可求出cosA的值.
解答:解:∵tanA=
sinA
cosA
=-2<0,即sinA=-2cosA,且sin2A+cos2A=1,
∴5cos2A=1,即cos2A=
1
5
,A為鈍角,
∴cosA=-
5
5

故選B.
點評:此題考查了同角三角函數間的基本關系,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,若tanA+tanB+tanC=1,則tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,若tanA=-
1
2
,則cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD為長方形,AB=2,BC=1,O為AB的中點,在長方形ABCD內隨機取一點,取得的點到O距離大小1的概率為1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,則△ABC是銳角三角形,其中正確命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,若tanA=2tanB=3tanC,則cosA的值為
 

查看答案和解析>>

同步練習冊答案