如圖,四邊形ABCD內(nèi)接于圓O,∠BOD=110°,∠BCD等于( 。
A、100°B、110°C、125°D、135°
考點:圓內(nèi)接多邊形的性質(zhì)與判定,弦切角
專題:計算題,幾何證明
分析:利用同弧所對的圓周角與圓心角的關(guān)系,易求得圓周角∠BAD的度數(shù);由于圓內(nèi)接四邊形的內(nèi)對角互補,則∠BAD+∠BCD=180°,由此可求得∠BCD的度數(shù).
解答:解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠BAD+∠BCD=180°,
∵∠BAD=
1
2
∠BOD=55°,
∴∠BCD=180°-∠BAD=125°;
故選:C.
點評:此題主要考查的是圓內(nèi)接四邊形的性質(zhì)及圓周角定理的綜合應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高!督y(tǒng)計》課程的教師隨機給出了選該課程的一些情況,具體數(shù)據(jù)如下:
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1310
720
為了判斷選修統(tǒng)計專業(yè)是否與性別有關(guān),根據(jù)表中數(shù)據(jù),得K2≈4.844,所以可以判定選修統(tǒng)計專業(yè)與性別有關(guān).那么這種判斷出錯的可能性為( 。
A、5%B、95%
C、1%D、99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,且PD=AD,求:平面PAB的一個法向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x+2|+|x-3|的最小值為n,則二項式(x2+
2
x
n的展開式中的常數(shù)項是(  )
A、第3項B、第4項
C、第5項D、第6項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(-4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,O是外心,I是內(nèi)心,若∠BOC=∠BIC,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若增廣矩陣為
m37
5n8
的二元線性方程組的解為
x=2
y=1
,則mn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C:p=2cosθ上任意一點P到點Q(
2
π
4
)的最大距離等于( 。
A、
2
B、2
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-1+2i是下列哪個實系數(shù)方程的一個根( 。
A、x2-4x+5=0B、x2+4x+5=0C、x2-2x+5=0D、x2+2x+5=0

查看答案和解析>>

同步練習(xí)冊答案