分析:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,把(4,0)代入即可;
(2)①先證出△BDO≌△COD,得出∠BDO=∠CDO,再根據(jù)∠CDO=∠ADP,即可得出∠BDE=∠ADP,
②先連結(jié)PE,根據(jù)∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再證出∠DFE=∠DPE=45°,最后根據(jù)∠DEF=90°,得出△DEF是等腰直角三角形,從而求出DF=
DE,即y=
x;
(3)當(dāng)
=2時(shí),過(guò)點(diǎn)F作FH⊥OB于點(diǎn)H,則∠DBO=∠BFH,再證出△BOD∽△FHB,
===2,得出FH=2,OD=2BH,再根據(jù)∠FHO=∠EOH=∠OEF=90°,得出四邊形OEFH是矩形,OE=FH=2,EF=OH=4-
OD,根據(jù)DE=EF,求出OD的長(zhǎng),從而得出直線CD的解析式為y=
x+
,再聯(lián)解直線方程即可求出點(diǎn)P的坐標(biāo);
當(dāng)
=
時(shí),連結(jié)EB,先證出△DEF是等腰直角三角形,過(guò)點(diǎn)F作FG⊥OB于點(diǎn)G,同理可得△BOD∽△FGB,
===
,得出FG=8,OD=
BG,再證出四邊形OEFG是矩形,求出OD的值,再求出直線CD的解析式,最后聯(lián)解直線方程即可求出點(diǎn)P的坐標(biāo).
解答:解:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,
代入(4,0)得:4k+4=0,解得k=-1,
則直線AB的函數(shù)解析式為y=-x+4;
(2)①由已知得:OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,∴△BDO≌△CDO,可得∠BDO=∠CDO,
∵∠CDO=∠ADP,∴∠BDE=∠ADP,
②連結(jié)PE,
∵∠ADP是△DPE的一個(gè)外角,∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一個(gè)外角,∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,可得∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直徑,∴∠DEF=90°,可得△DEF是等腰直角三角形,
∴DF=
DE,即y=
x;
(3)當(dāng)BD:BF=2:1時(shí),過(guò)點(diǎn)F作FH⊥OB于點(diǎn)H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,可得
=
=
=2,得FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,∴四邊形OEFH是矩形,可得OE=FH=2,EF=OH=4-
OD,
∵DE=EF,∴2+OD=4-
OD,解得OD=
,
∴點(diǎn)D的坐標(biāo)為(0,
),
∴直線CD的解析式為y=
x+
,
由
得:
,
則點(diǎn)P的坐標(biāo)為(2,2);
當(dāng)
=
時(shí),連結(jié)EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEB=∠DPA,∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
過(guò)點(diǎn)F作FG⊥OB于點(diǎn)G,
同理可得△BOD∽△FGB,∴
=
=
=
,F(xiàn)G=8,OD=
BG,
∵∠FGO=∠GOE=∠OEF=90°,∴四邊形OEFG是矩形,得OE=FG=8,
∴EF=OG=4+2OD,
∵DE=EF,∴8-OD=4+2OD,OD=
,解得點(diǎn)D的坐標(biāo)為(0,-
),
直線CD的解析式為:y=-
x-
,
由
得:
,∴點(diǎn)P的坐標(biāo)為(8,-4),
綜上所述,點(diǎn)P的坐標(biāo)為(2,2)或(8,-4).