(2013·安徽高考)設數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2,求數(shù)列{bn}的前n項和Sn
(1)an=n+1    (2)Sn=n2+3n+1-
(1)由題設可得f′(x)=an-an+1+an+2-an+1sin x-an+2cos x.
對任意n∈N*,f′=an-an+1+an+2-an+1=0,
即an+1-an=an+2-an+1,故{an}為等差數(shù)列.
由a1=2,a2+a4=8解得{an}的公差d=1,
所以an=2+1·(n-1)=n+1.
(2)由bn=2=2=2n++2知,
Sn=b1+b2+…+bn=2n+2·=n2+3n+1-
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在無窮數(shù)列中,,對于任意,都有,. 設, 記使得成立的的最大值為.
(1)設數(shù)列為1,3,5,7,,寫出,,的值;
(2)若為等比數(shù)列,且,求的值;
(3)若為等差數(shù)列,求出所有可能的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),則S100=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(2013·寧波模擬)等差數(shù)列{an}中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列的首項,公差,等比數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)設數(shù)列對任意均有,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2013•天津)已知首項為的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設,求數(shù)列{Tn}的最大項的值與最小項的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知{an}是公比為q的等比數(shù)列,且am、am+2、am+1成等差數(shù)列.
(1)求q的值;
(2)設數(shù)列{an}的前n項和為Sn,試判斷Sm、Sm+2、Sm+1是否成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列的前n項和,則的值為 (     )
A.20 B.21   C.22     D.23

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等差數(shù)列中,,那么         

查看答案和解析>>

同步練習冊答案